JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ZEMĚDĚLSKÁ FAKULTA Katedra pozemkových úprav

Studijní program: M4101 Zemědělské inženýrství Studijní obor: Pozemkové úpravy a převody nemovitostí

DIPLOMOVÁ PRÁCE

Geodetická sledování prostorových polohových změn rekultivovaných svahů pohornické krajiny

Vedoucí diplomové práce: Doc. Ing. Pavel Hánek, Csc. Autor: Eliška Dvořáková

2009

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Zemědělská fakulta Katedra pozemkových úprav Akademický rok: 2006/2007

ZADÁNÍ DIPLOMOVÉ PRÁCE

(PROJEKTU, UMĚLECKÉHO DÍLA, UMĚLECKÉHO VÝKONU)

Jméno a příjmení:	Eliška DVOŘÁKOVÁ
Studijní program:	M4101 Zemědělské inženýrství
Studijní obor:	Pozemkové úpravy a převody nemovitostí

Název tématu: Geodetická sledování prostorových polohových změn rekultivovaných svahů pohornické krajiny.

Zásady pro vypracování:

Prostudujte možnosti aplikací geodetických pozemních i družicových metod pro sledování 3D změn polohy diskrétních bodů přetvářeného terénu. Vyhodnoťte etapová měření v místní síti Rabenov, okres Ústí nad Labem.

Rozsah grafických prací: Rozsah pracovní zprávy: Forma zpracování diplomové práce: dle potřeby 30 - 50 stran tištěná/elektronická

Seznam odborné literatury:

Švec, M. - Hánek, P.: Stavební geodezie 10. 3. vydání. Praha, ČVUT 2006.
Záleský, J. - Bohadlová, M. - Bubeníček, M. - Záleský, M. - Hánek, P.
- Bubeník, F. - Hánek, P. (Jr.): Coupled application of geotechnical and geodetical slope movement monitoring. 3rd IAG Symposium on Geodesy for Geotechnical and Structural Engineering and 12th FIG Symposium on Deformation Measurement. CD Rom, Baden 2006.

Bubeník, F. - Hánek, P. (Jr.)- Hánek, P. - Janžurová, I.: Geodätische Messungen von Hangrutschungen. Allgemeine Vermessungs-Nachrichten 113, 2006, č.1, s. 310-315.

Vedoucí diplomové práce:

Ing. Pavel Hánek Katedra pozemkových úprav

Datum zadání diplomové práce: Termín odevzdání diplomové práce: 29. března 2007 30. dubna 2009

CESKA UNIVERZITA ČESKÝCH BUDĚJOVICÍCH ZEMĚDĚLSKÁ FAKULTA studijní oddělení Studentská 19 378 bb. České Budějovice

L.S.

doc. Ing. Tomáš vedoucí katedry

prof. Ing. Martin Křížek, CSc. děkan

V Českých Budějovicích dne 29. března 2007

V.2

Prohlášení

Prohlašuji, že jsem tuto diplomovou práci vypracovala samostatně, s výjimkou odborných konzultací. Veškerá literatura a materiály, z nichž jsem při zpracování práce čerpala, jsou uvedeny v seznamu použité literatury.

V Dražicích, dne 20. dubna 2009

Eliška Dvořáková

Poděkování

Ráda bych poděkovala Doc. Ing. Pavlu Hánkovi, CSc. za veškerou pomoc a odborné vedení mé diplomové práce.

Za důležité připomínky, cenné rady a pomoc při měření děkuji zvláště Ing. Martinu Pavlovi a všem ostatním, kteří se na měřeních podíleli.

Za podporu a pomoc při studiu vděčím svým rodičům, příteli a nejbližším přátelům.

ABSTRAKT

Tématem této práce je vyhodnocení 2 etapových měření v místní síti Rabenov provedených v roce 2007. Síť byla vybudována pro sledování svahových posunů v bývalé těžební oblasti u Ústí nad Labem. Konkrétně se jedná o jihozápadní část bývalého lomu Chabařovice. Pro terestrická měření se použily totální stanice Leica TC 1700 a 1800. GPS měření proběhlo pomocí soupravy Trimble 5700. Získané hodnoty - vodorovné úhly, šikmé délky a zenitové úhly byly nejprve redukovány na spojnici stabilizačních značek. Z redukovaných hodnot byly vypočteny vyrovnáním prostorové sítě souřadnice bodů. Výsledné souřadnice byly porovnány s nultou etapou a byly spočteny jejich odchylky. Veškeré výpočty proběhly v geodetickém počítačovém softwaru Rocinante. Posledním bodem práce bylo testování odrazných hranolů.

ABSTRACT

The project is about the evaluation of 2 stage measurements in local coordinate net Rabenov which were done in 2007. This local coordinate net was set for monitoring of slope shifts at the former mining area near Ústí nad Labem. In concrete terms in south - eastern part of Chabařovice mine. For terrestrial measurements were used total stations Leica TC 1700 and 1800 and GPS measurement on the basis of GPS surveying system Trimble 5700. The achieved values - horizontal angles, oblique distance, and zenithal angles were reduced onto joins of stabilization marks. From these reduced values the coordinates of standpoints were computed by evaluation of three-dimensional net. These determined coordinates were compared with the zero stage of measurement and deviations were computed. Each computation was done by geodetic computer software Rocinante. Next task was the testing of the different types of reflecting targets.

OBSAH

1	Ú	VOD		8
2	R	ABEN	OV	9
	2.1	Těžb	a hnědého uhlí	10
	2.2	Lom	Chabařovice	10
3	G	EODE	FICKÁ MĚŘENÍ	17
	3.1	Míst	ní měřická síť	17
	3.2	Příst	roje a pomůcky	19
	3.3	Posti	ıp měření	21
4	P	OČETI	NÍ ZPRACOVÁNÍ MĚŘENÝCH HODNOT	23
	4.1	Redu	ıkce délek	25
	4.2	Redu	ıkce měřených zenitových úhlů	27
	4.3	Urče	ní přesnosti měřených veličin	27
		4.3.1	Směrodatné odchylky šikmých délek	27
		4.3.2	Směrodatné odchylky vodorovných směrů	28
		4.3.3	Směrodatné odchylky zenitových úhlů	30
		4.3.4	Hodnoty směrodatných odchylek	31
5	V	YROV	NÁNÍ PROSTOROVÉ SÍTĚ	36
	5.1	Teor	ie vyrovnání	36
		5.1.1	Podstata metody nejmenších čtverců	38
		5.1.2	Váhy měření	38
	5.2	Vyro	vnání místní sítě Rabenov	39
6	P	OROV	NÁNÍ ETAPOVÝCH MĚŘENÍ	48
7	G	PS OB	SERVACE	54
	7.1	Využ	tití GPS při měření sítě Rabenov	55
		7.1.1	Použité přístroje	55
		7.1.2	Transformace terestrického měření do měření GPS	56
8	T	ESTOV	VÁNÍ ODRAZNÝCH HRANOLŮ	57
9	Z	ÁVĚR		61
10	S	EZNAN	A POUŽITÉ LITERATURY	62

1 ÚVOD

Diplomová práce se zabývá posouzením svahových posunů v lokalitě bývalého povrchového lomu Chabařovice v severních Čechách. Konkrétně se týká vyhodnocení dvou etapových měření.

Výsledky dosažené v rámci etapových měření se využívají ve výzkumném záměru VZ MSM 68 40 77 0001 – Spolehlivost, optimalizace a trvanlivost stavebních materiálů a konstrukcí a VZ MSM 68 40 77 0005 – Udržitelná výstavba. Tato práce slouží jako kontrolní zhodnocení dřívějších výsledků použitých v rámci tohoto výzkumu.

Práce jsou prováděny ve prospěch státního podniku Palivový kombinát Ústí nad Labem, s.p., který v současné době řídí rekultivační činnost.

Pozorování nebo-li monitoring je chápán jako kontrola a sledování stavu sesuvu v čase. Úkolem měření je zjistit, jakým směrem a v jakém rozsahu nastává sesuvná činnost. V případě, že byl sesuv sanován, sleduje se funkčnost použitých sanačních prvků a případná nutnost jejich údržby. Monitoring je dlouhodobý proces a trvá mnohdy až desítky let. Pozorováním pohybů se zabývají i jiné vědní obory, se kterými je nutno spolupracovat. Jde především o geotechnické, geologické a hydrologické práce.

Cílem práce je posoudit sesuvy na rizikovém svahu a porovnat je s předchozími etapami. Poslední kapitola se zabývá testováním odrazných hranolů použitých při měření.

2 RABENOV

Zdrojem informací byly především [1], [2], [3] a [4].

Svah Rabenov je součástí výsypky bývalého lomu Chabařovice, západně od Ústí nad Labem. Konkrétně se nachází mezi plaveništěm teplárny Trmice a dálnicí D8. Za období těžebních prací sloužilo toto území jako boční výsypka.

Sledovaná lokalita je znázorněna na následujícím obrázku (obr. 1).

Obr. 1. Mapový výřez se zákresem lokality

V průběhu historie byla těžba nedílnou součástí zdejší lokality. Místnímu obyvatelstvu přinášela klady, v podobě pracovních možností, ale samozřejmě i nemalé zápory. Mezi největší negativa těžby patří bezesporu špatný vliv na životní prostředí. Také nemůžeme opomenout zničení několika vesnic, před jejichž existencí dostala těžba hnědého uhlí přednost.

V následujících kapitolách se snažím nastínit něco málo z historie, současnosti a předpokládané budoucnosti celé severočeské těžební oblasti i samotného lomu Chabařovice.

2.1 TĚŽBA HNĚDÉHO UHLÍ

Příroda vybavila podkrušnohorský úval nesmírným bohatstvím mohutné hnědouhelné sloje a historie těžby uhlí zde má dlouholetou tradici. Dokládá jí i záznam v Městské knize duchcovské o těžbě uhlí na dole v Pomezním lese v roce 1403. Obrovské zásoby uhlí v severočeské hnědouhelné pánvi výrazně ovlivnily zdejší rozvoj průmyslu i dopravy a zájem o uhlí neustále stoupal. S rostoucí poptávkou byly hlubinné doly nahrazovány povrchovými lomy. V roce 1945 bylo v prostoru severočeské hnědouhelné pánve 34 hlubinných a 24 povrchových lomů. Povrchová těžba vzrůstala a hlubinné doly zanikaly.

V současnosti probíhá v celých Severních Čechách útlum těžby. Otázka budoucího rozvoje není jednoduchá, jelikož nejde dost dobře vážně mluvit o ekonomickém, sociálním a ekologickém rozvoji Ústecka, aniž by se zároveň prosadil útlum povrchových velkolomů a hnědouhelných elektráren.

2.2 LOM CHABAŘOVICE

Nejvýchodnější část severočeské hnědouhelné pánve zasahuje až do těsné blízkosti města Ústí n.L. Proto se na Ústecku, a to již od 18. století uhlí průmyslově těžilo, nejdříve hlubinným způsobem a později povrchově.

Těžba uhlí v lomu Chabařovice začala roku 1977 s tím, že jeho činnost bude ukončena po vytěžení všech uhelných zásob. Důvodem jeho otvírky bylo především zabezpečení kvalitního uhlí pro Tlakovou plynárnu Úžín (Ústí n. L.) a energetického uhlí pro elektrárnu (později teplárnu) Trmice. Uhlí v této lokalitě se vyznačovalo výjimečně nízkým obsahem síry (0,35 %).

Po roce 1989 závisel další postup lomu na likvidaci Ocelárny Chabařovice a města Chabařovice. Avšak Usnesení vlády České republiky ze dne 11. září 1991 stanovilo závaznou linii těžby, rozhodlo zachovat město Chabařovice , Ocelárnu Chabařovice a odepsat uhelné zásoby vázané stanovenou hranicí. Od 1. ledna 1994 byla zahájena etapa útlumu s následnou likvidací lomu Chabařovice.

Likvidací lomu Chabařovice tak skončila těžba uhlí ve východní části severočeské hnědouhelné pánve. Lom Chabařovice ukončil těžbu a odbyt uhlí v roce 1997. Skrývka nadložních zemin byla ukončena 17. března 2000.

Původní stav a funkce krajiny v prostoru lomu Chabařovice

Charakteristickým znakem původní krajiny lomu Chabařovice bylo ploché údolí Modlanského potoka. Od původního koryta tohoto potoka směrem jižním na poměrně příkrých svazích jsou situovány vnější výsypky lomu (Žichlická, Lochočická), a to až k zalesněným úpatím kopců Rovný, Jedovina a Rač. Směrem severním, na mírnějších svazích, postupovala těžba.

Původní lesní porosty nebyly postupem lomu prakticky narušeny. Nacházejí se v těsné blízkosti vnějších výsypek, a to za jejich jižním okrajem. Jedná se o již zmíněné vrcholy kopců Rovný, Jedovina a Ráč. Jde o smíšené porosty.

Území dotčené těžbou bylo dříve převážně využíváno k zemědělským účelům. Nejvyšší bonita půdy byla v prostoru bývalé obce Lochočice, ovocnářství bylo rozvinuto v obci Žichlice, ztratilo však svůj význam po 2. světové válce. Dřívější prosperita území byla zajišťována rovněž těžbou uhlí v řadě místních hlubinných dolů. Hlubinná těžba zasáhla podstatnou část území a po jejím ukončení (důl Prokop Holý v Tuchomyšli v roce 1962) zde zanechala řadu negativních vlivů na krajinu – poklesy území, zamokřená území. Ty byly postupně rekultivační činností odstraňovány.

Charakter území dlouhodobě ovlivňovaný těžební činností nevytvářel vhodné podmínky pro běžné využívání krajiny.

Sledovaný svah

Svah Rabenov se nachází na vulkanického vrchu Rovný (376m. n. m.). Zájmové území je vyznačeno na následujícím leteckém snímku (obr. 2).

Svah je dlouhodobě narušen sesuvy půdy, které se projevovaly už při těžebních činnostech. příčinou byla geomechanická vlastnost hornin a zemin, spolu se zastavením zdroje pitné vody pro zrušenou vesnici Tluchomyšl.

Ukončením těžby došlo k předčasnému zastavení těžební činnosti v nejhorších báňsko – technologických a hydrogeologických podmínkách a následnými usneseními ke stanovení nových závazných těžebních linií. Z tohoto důvodu nedošlo k vytěžení původně projektovaných a plánovaných lokalit a současně ani k plánovanému založení vnitřních výsypek, které měly plnit funkci stabilizačního prvku ve vztahu ke skrývkovým svahům.

Podle původní báňské koncepce měly být svahy Rabenov podepřeny etážemi vnitřní výsypky až do úrovně mezi 255 a 270 m n. m., kdy horní stavba by byla podepřena zemním tělesem a tím by byla takto problematická část svahu zajištěna. Ve skutečnosti

se po předčasném ukončení těžby projevil deficit výsypkových zemin, nedošlo k dosypání etáží do projektované úrovně ani na náhradní úroveň 215 m n. m., která měla podle báňsko – technologického návrhu snížit výšku nezabezpečeného svahu. Časem nastal rozvoj svahových pohybů.

Zátrh v terénu a sesuv půdy jsou patrné na následujících obrázcích (obr. 3, obr. 4).

Obr. 2: Letecký snímek s vyznačenou zájmovou oblastí

Obr. 3: Zátrh v terénu

Obr. 4: Sesuv půdy

Rekultivace a revitalizace území

Rekultivace znamená obnovu a tvorbu půdního fondu v oblasti zasáhnuté průmyslovou činností. Jde o velmi složitý proces, podmíněný několika zásadními

požadavky respektující přírodní, sociální i ekonomické podmínky života v dané oblasti. Jde např. o ekologickou vyváženost krajiny, ekonomické a efektivní zastoupení forem zemědělských kultur, zdravotní požadavky, zastoupení zdánlivě nedůležitých bakterií, hub a ostatních mikroorganismů, estetický požadavek aj.

V rámci zahlazování následků těžební činnosti se v prostoru bývalého hnědouhelného lomu provádějí sanační (obr. 5) a rekultivační práce, řízené podle "Generelu rekultivací do ukončení komplexní revitalizace území dotčeného těžební činností PKÚ, s. p.", který byl schválen rozhodnutím MŽP ČR v dubnu 1999.

Území, které bylo narušeno těžbou a zakládáním vnějších výsypek představuje téměř 1500 ha. Koncepce sanačních a rekultivačních prací, jejíž cílem je obnovit funkci krajiny v těžbou narušeném území, a to jak její přírodní, tak i sociálně ekonomické složky, je založena na hydrické rekultivaci zbytkové jámy po těžbě. Tím vznikne jezero o ploše téměř 250 ha s průměrnou hloubkou kolem 15 m a objemem vody více než 35 mil. m3. Ve srovnání s řadou jezer a přehradních nádrží se jedná o poměrně rozsáhlou vodní plochu. V rámci podkrušnohorských revírů se uvažuje s postupným zatopením celkem osmi zbytkových jam, z nichž však bude chabařovická nejmenší. Největší plochu by mělo mít jezero lomů Jiří – Družba v Sokolovském revíru, a to více než 1 300 ha. Největší objem vody jezero lomu Bílina téměř 650mil.m3. Tato jezero by mělo být i nejhlubší s maximální hloubkou více než 150m.

U jezera zbytkové jámy lomu Chabařovice se předpokládá jeho mnohostranné využití, a to nejen pro rekreaci a sport, ale i pro sportovní rybolov. Velmi významná bude jeho funkce ekologická, krajinně estetická, především potom při spojení rekultivovaného území lomu a výsypek s okolní těžbou nenarušenou krajinou.

Komplexní sanace a rekultivace je navržena s rozdílným využitím jednotlivých částí území přiléhajícího k jezeru. Byla vyčleněna a následně upravována morfologie terénu v severovýchodní části vyhovující budoucímu cílovému zaměření a to pro rekreaci a sport (koupání, sportoviště, dětská hřiště a jejich zázemí).

V červnu 2001 bylo zahájeno napouštění zbytkové jámy lomu vodou. Vzhledem k tomu, že k napouštění je možno využívat pouze vodu z krušnohorských potoků, vodu z povodí zbytkové jámy a částečně vodu důlní stařinovou, bude konečné kóty hladiny dosaženo nejdříve za 5 – 6 let.

Obr. 5: Sanace svahů jezera

Lom Chabařovice je prvním z velkých povrchových dolů v rámci ČR, u kterých po ukončení těžby dospěly sanační a rekultivační práce do stadia, kdy zbytková jáma po těžbě je již zaplavována vodou (obr. 6). Tím se zákonitě stává modelovou lokalitou, na níž je upřena zvýšená pozornost a kdy bude podle výsledků dosažených na tomto lomu hodnocen záměr komplexního využití těžbou devastovaného území, jehož dominantou je jezero zbytkové jámy. Proto je této lokalitě věnována všestranná pozornost a jsou průběžně vytvářeny příznivé podmínky pro optimální zvládnutí komplexní problematiky, která s tímto procesem souvisí.

Obr. 6: Jezero Chabařovice

Realizace návrhů, které jsou předmětem zpracované dokumentace, má velkou měrou přispět k vytvoření v málo vzdáleném okolí města Ústí n. L. atraktivního území, které bude sloužit všestrannému využití, a to jako místo pro rekreaci, oddych, turistiku, sport, sportovní rybolov. Zároveň bude plnit významnou funkci krajinně estetickou i ekologickou.

Významný by mohl být i přínos pro region v oblasti sociálně ekonomické zvýšením zaměstnanosti při činnostech souvisejících se sportovně rekreačními aktivitami, především v oblasti služeb.

3 GEODETICKÉ MĚŘENÍ

V této kapitole jsem čerpala převážně z [1], [2] a [5]

3.1 MÍSTNÍ MĚŘICKÁ SÍŤ

Místní síť byla vybudována v létě roku 2002 v rámci grantového projektu GA ČR 103/02/116 "Výzkum a verifikace metod sledování svahových pohybů".

Geodetická prostorová měřická síť Rabenov je tvořena třemi inklinometrickými vrty, označenými Rab01, Rab02, Rab03 (obr.7). Vrty mají zapuštěnou kombinovanou pažnici o hloubce 24m a podle předpokladu zasahují až do stabilního podloží. Tyto body byly navrženy ve spolupráci s geofyziky v místech, kde se předpokládá stabilita svahu. Takto vystrojené vrty umožňují provádět geotechnická měření pomocí inklinometrů. V průběhu sledování svahu se však zjistilo, že i takto stabilizované body mají tendenci se pohybovat a tudíž nejsou pevné.

Čtvrtým stanoviskovým bodem Rab04 je nastřelovací hřeb umístěný na betonové patce zrušeného sloupu elektrického vedení. Na tomto bodě proběhlo měření naposledy během 8. etapy a nadále bylo od měření na tomto bodě upuštěno. Důvodem byla špatná viditelnost na ostatní stanoviskové a podrobné body, díky rozrůstající se vegetaci. Dalším důvodem bylo také to, že dlouhodobým měřením byla zjištěna stabilita této horní lokality.

Posledním bodem sítě je bod Rab05, který byl zaměřen v 8. etapě a v následující použit jako bod stanoviskový. Do následující etapy byl Rab05 zničen, tudíž byla znemožněna veškerá další měření na tomto bodě.

Obr. 7: Stabilizace bodu se zasunutým centračním přípravkem

Stabilizace podrobných charakteristických bodů terénu je provedena ocelovou tyčí o průměru 0,06m a délce 1,25m s vnitřním závitem na horním konci, který je chráněn krytkou (obr. 8). Na podrobné body se měřilo v 0.- 4. etapě a v 7. etapě. V 10. etapě byly některé body využity k centraci při testování vlivů zacílení na různé typy hranolů.

Obr. 8: Stabilizace podrobného bodu

3.2 PŘÍSTROJE A POMŮCKY

Při geodetickém měření na svahu Rabenov byly použity univerzální elektronické dálkoměry Leica TC 1700 a 1800 švýcarské firmy Leica – Geosystems. Oba přístroje mají téměř stejnou konstrukci. Liší v přesnosti a svým softwarovým vybavením.

Dálkoměr je světelný impulsový. Přesnost měření délky je 2+2ppm u obou přístrojů. Leica TC 1700 umožňuje měření úhlů s přesností 0,5mgon. Přesnost přístroje Leica TC 1800 je 0,3mgon. Zvětšení dalekohledu je u obou typů třicetinásobné.

Integrovaný software dokáže určit osové chyby teodolitu. Následně software zavede automatické korekce. Automaticky se opravují chyby: kolimační, točné osy dalekohledu, indexová, indexová chyba kompenzátoru, z excentrity děleného kruhu, z nesvislosti vertikální osy. Při měření byla využita možnost zavádět fyzikální redukci přímo softwarem. Pro výpočet této redukce bylo nutné do přístroje zadat aktuální hodnoty atmosférické teploty a tlaku.

Obr. 9. Leica TC 1800

Přístroj se skládá z třínožky, alhidády a dalekohledu. Měření zenitových úhlů a směrů probíhá pomocí dvou hlavních kruhů, vertikálního a horizontálního.

Pro měření byly použity odrazné hranoly značky Leica. Na cílený hranol Leica GPR1 (obr. 10) probíhalo měření s i bez pomocného terče. Všesměrný hranol Leica GRZ4 (obr. 11) slouží k efektivnímu měření bez nutnosti otáčet odrazové zrcadlo proti přístroji. V 10. etapě byl využit hranol Leica GPR121 (obr. 12). Tento odrazný hranol má výraznou červenou barvu a nesnímatelný pomocný terč.

Obr. 10: Leica GPR1 *Obr.* 11: Leica GRZ4 *Obr.* 12: Leica GPR121

Pomůckou pro měření byl mosazný centrační prvek (obr. 13). Tato pomůcka slouží k centrování bodů Rab01, Rab02, Rab03 a Rab05. Centrační přípravek se pomalu spustí do příslušného otvoru na stanoviskovém bodě.

Obr. 13: Centrační prvek pro dostředění na vrtu

Dalšími pomůckami byly třínožky Leica GDF122 s optickým centrovačem, stativy, teploměr a tlakoměr nutné pro zavedení fyzikální redukce.

3.3 POSTUP MĚŘENÍ

9. etapa

Dne 14.4.2007 proběhla 9. etapa terestrického měření na svahu Rabenov. Při této etapě byla přeměřena pouze místní síť. Podrobné body se během této etapy neměřily. Terestrické měření se uskutečnilo na bodech Rab01, Rab02, Rab03 a Rab 05. Bod Rab04 již nebyl předmětem měření. Následující schéma (obr. 14) ukazuje přibližné umístění bodů.

Obr. 14: Přibližné schéma místní sítě

Celkem proběhlo sedm terestrických měření. První měření bylo v neredukovaném stavu ze všech čtyř stanoviskových bodů. Toto měření provedli Doc. Ing. Pavel Hánek, Csc. na bodě Rab01, Ing. Ilona Janžurová na bodech Rab03, Rab05 a Ing. Pavel Hánek zaměřil místní síť ze stanoviska Rab02. Jelikož mezi body Rab02 a Rab05 není viditelnost, neměřilo se mezi nimi. Při měření v neredukovaném stavu tedy vznikly dva trojúhelníky Rab01,02,03 a Rab01,02,05. Všechny délky, pokud to konfigurace sítě dovolila, byly měřeny protisměrně.

Následujících šest měření v redukovaném stavu bylo měřeno třemi studenty. Pro redukovaný stav byly vybrány body Rab01 a Rab02. Každý student měřil na obou

stanoviscích. Pomocí cílených hranolů se měřilo v jedné skupině. Ve dvou skupinách proběhlo měření na všesměrné hranoly.

Měřené hodnoty, vodorovné směry, zenitové úhly a šikmé vzdálenosti byly průběžně zaznamenány do příslušných zápisníků. Tento postup umožnil okamžitou kontrolu a vyloučení hrubých chyb. Aktuální hodnoty atmosférické teploty a tlaku byly vloženy do přístroje pro zajištění automatické fyzikální redukce.

V této etapě proběhlo měření GPS pomocí soupravy Trimble 5700.

10.etapa

Ve dnech 15. a 16. srpna 2007 se uskutečnila 10. etapa měření. Měření sítě proběhlo ze tří stanoviskových bodů Rab01, Rab02 a Rab03. Bod Rab05 byl vlivem nestability podloží poničen a tudíž se znemožnilo měření na něm. Měřická síť se zaměřila s využitím cílených hranolů ve dvou skupinách.

V 10. etapě proběhlo testování různých hranolů. Byly zvoleny body přibližného profilu svahu, na kterých byl postaven stativ. Profil byl zvolen z důvodu zohlednění nejen vzdálenosti, ale i sklonu záměry.

Pokud byl nalezen podrobný bod terénu, byly hranoly centrovány na přibližné středy stabilizačních značek. Nicméně většina podrobných bodů byla poničena, nebo vůbec nenalezena.

Měření GPS v této etapě neproběhlo.

Instrumentarium a jeho příprava jsou na každém ze stanovisek v každé etapě identické, stativy s horizontovanými a centrovanými podložkami se během měření nepřenášejí. Tím je téměř vyloučen vliv přístrojových systematických chyb.

4 POČETNÍ ZPRACOVÁNÍ MĚŘENÝCH HODNOT

Informace pro tuto kapitolu jsem čerpala z [6], [7] a [8].

Do úprav měřených veličin před výpočty patří problematika redukcí. Výška jednotlivých stanovisek a cílů není stejná, proto je nutné opravit naměřené veličiny o příslušné korekce. Je nutno zavést redukce měřených veličin, zenitových úhlů a šikmých délek na spojnici stabilizačních značek.

Obr. 15: Redukce délek a zenitových úhlů

Níže uvedené vzorce vycházejí z předešlého obrázku (obr. 15). Pro lepší orientaci uvádím nejprve veškerou symboliku, která se ve vzorcích objevuje.

Použitá symbolika:

D_{ij}	šikmá délka (měřená),
${}^{1}D_{ij}^{\tilde{\prime}}$	šikmá délka (redukovaná na rovnoběžku se spojnicí stabilizačních značek),
${}^{1}D_{ij}$	šikmá délka (redukovaná na spojnici stabilizačních značek),
${}^{1}D_{ij}^{m}$	vodorovná délka (v průměrné nadmořské výšce H_m),
${}^{1}D_{ij}^{0}$	vodorovná délka (v nulovém horizontu),
$^{*}Z_{TC}$	zenitový úhel (měřený),
${}^{1}Z_{ij}$	zenitový úhel (redukovaný k rovnoběžce se spojnicí stabilizačních značek),
R	poloměr referenční koule,
H_i / H_j	nadmořská výška bodu P_i / P_j ,
v_T / v_C	výška stroje / cíle,
H_T / H_C	nadmořská výška bodu T / C ,
H_{m}	střední (průměrná) výška bodů <i>T</i> a <i>C</i> ,
\pmb{arphi}_{ij}	úhel sbíhavosti tížnic,
k	Gaussův koeficient refrakce ($k = 0,1306$)
$ ho_{_{ij}}$	refrakční úhel,
δZ_{TC}	oprava zenitového úhlu z nestejné výšky stroje a cíle,
Δv_{TC}	rozdíl výšky cíle a výšky stroje,
Δ	oprava délky na vlastní spojnici stabilizačních značek,
$H_{m}^{'}$	střední (průměrná) výška bodů P_i a P_j .

4.1 REDUKCE DÉLEK

a) Fyzikální redukce délek

Při měření byla fyzikální redukce provedena automaticky softwarem přístroje. Délky měřené elektronickým dálkoměrem byly opraveny o vliv aktuálního stavu prostředí. Před měřením byly v přístroji nastaveny hodnoty tlaku, teploty a vlhkosti. Jakákoli změna těchto parametrů musí být v přístroji opětovně nastavena.

b) Matematická redukce

Vliv zakřivení Země na měřené délky se projevuje jako rozdíl mezi délkou ve skutečném horizontu a délkou ve zdánlivém horizontu a jako změna délky promítnuté do nulového horizontu.

Matematickou redukcí rozumíme převod měřené šikmé délky na spojnici stabilizačních značek. Tuto hodnotu je možné následně převést na vodorovnou délku v průměrné výšce, popř. na vodorovnou délku v nulovém horizontu.Výpočet probíhá v několika krocích. Před samotným postupem matematické redukce uvádím výpočet refrakčního úhlu a úhlu sbíhavosti tížnic.

Vliv refrakce:

Paprsky se šíří přímočaře pouze ve vakuu, v atmosféře dochází při průchodu paprsku různě hustými vzduchovými vrstvami k lomu světla, tzv. refrakci. Paprsky přicházející z cíle k měřiči jsou odkloněny od geometricky přímé spojnice. Odchylka paprsku ve smyslu vertikálním je poměrně značná a projevuje se při měření svislých úhlů. Odchylka paprsku ve směru horizontálním je podstatně menší.

V přízemních vrstvách jsou větší teplotní rozdíly a tedy také větší horizontální refrakce. Ve větších výškách se teploty vyrovnávají, vzduch je stejnorodější a refrakce podstatně menší. Prospěšný je mírný vítr, protože přemísťuje vzduchové sloupce různé teploty, promíchává je a tím ruší nebo alespoň zmenšuje jejich systematický vliv.

Na území České republiky se pohybuje refrakce v rozmezí 0,08 - 0,18.

K výpočtu refrakčního úhlu slouží dva vzorce. Vzorec pro oboustranně měřené zenitové úhly (1), zjednodušený vzorec pro jednostranně měřené zenitové úhly (2).

$$\rho_{ij} = \frac{\pi}{2} + \frac{\varphi_{ij}}{2} - \frac{{}^{*}Z_{TC} + {}^{*}Z_{CT}}{2}, \qquad (1)$$

$$\rho_{ij} = k \cdot \frac{\varphi_{ij}}{2}.$$
(2)

Úhel sbíhavosti tížnic:

Vlivem sbíhavosti tížnic je délka v určité nadmořské výšce větší či menší než na nulovém horizontu.

Úhel sbíhavosti tížnic počítáme ze vzorce:

$$\varphi_{ij} = \frac{{}^{*}D_{ij}^{'}}{R + H_m},$$
(3)

kde:
$$H_m = \frac{H_T + H_C}{2}$$
; $H_T = H_i + v_T$; $H_C = H_j + v_C$ a $R = 6378 \, km$.

1. Převod na rovnoběžku se spojnicí stabilizačních značek:

$${}^{1}D_{ij}^{"} = \sqrt{\left({}^{*}D_{ij}^{'}\right)^{2} + \Delta v_{TC}^{2} - 2 \cdot {}^{*}D_{ij}^{'} \cdot \Delta v_{TC} \cdot \cos\left({}^{*}Z_{TC} + \rho_{ij} - \varphi_{ij}\right),$$
(4)
kde: $\Delta v_{TC} = v_{C} - v_{T}.$

2. Převod na vlastní spojnici stabilizačních značek

$${}^{1}D_{ij}^{'} = {}^{1}D_{ij}^{''} - \Delta, \qquad (5)$$

kde: Δ ... oprava ${}^{1}D_{ij}^{"}$ na spojnici stabilizačních značek,

$$\Delta = \varphi_{ij} \cdot v_T = \frac{{}^1 D_{ij}}{R + H_m} \cdot v_T \,. \tag{6}$$

Po dosazení do vzorce (5) dostaneme konečnou podobu pro výpočet délky na spojnici stabilizačních značek:

$${}^{1}D_{ij}^{'} = {}^{1}D_{ij}^{''} \cdot \left(1 - \frac{v_{T}}{R + H_{m}}\right).$$
⁽⁷⁾

4.2 REDUKCE ZENITOVÝCH ÚHLŮ

Z důvodu nestejné výšky přístroje a cíle je nutné redukovat měřený zenitový úhel. Jedná se o redukci naměřeného zenitového úhlu k rovnoběžce na spojnici stabilizačních značek. Zenitový úhel se také opravuje o vliv refrakce, který byl vysvětlen v kapitole 4.1.

Z obrázku (obr.15) je patrné zenitový úhel se vztahuje ke každé rovnoběžce se spojnicí stabilizačních značek a vyplývá z něj vzorec:

$${}^{1}Z_{ij} = {}^{*}Z_{TC} + \rho_{ij} + \delta Z_{TC}, \qquad (8)$$

kde:
$$\delta Z_{TC} = \operatorname{arctg} \frac{\Delta v_{TC} \cdot \sin({}^{*}Z_{TC} + \rho_{ij} - \varphi_{ij})}{{}^{*}D_{ij} - \Delta v_{TC} \cdot \cos({}^{*}Z_{TC} + \rho_{ij} - \varphi_{ij})}.$$
 (9)

Vzorec pro protisměrně měřené zenitové úhly:

$${}^{1}Z_{ji} = {}^{*}Z_{CT} + \rho_{ij} - \delta Z_{TC}.$$
⁽¹⁰⁾

Výsledné zredukované hodnoty se použily pro následný výpočet měřické sítě. Zredukované délky a zenitové úhly jsou uvedeny v tabulkách v příloze této práce.

4.3 URČENÍ PŘESNOSTI MĚŘENÝCH VELIČIN

V této části jsem čerpala z [6] a [9].

Rozbory přesnosti provádíme pomocí směrodatných odchylek. Obecně je směrodatná odchylka v teorii pravděpodobnosti a statistice často používanou mírou určitého rozptylu. Jedná se o kvadratický průměr odchylek hodnot znaku od jejich aritmetického průměru. Zhruba řečeno vypovídá o tom, jak moc se od sebe navzájem liší typické případy v souboru zkoumaných čísel. Je-li malá, jsou si prvky souboru většinou navzájem podobné, a naopak velká směrodatná odchylka signalizuje velké vzájemné odlišnosti. Směrodatná odchylka je nejužívanější míra variability.

4.3.1 Směrodatné odchylky šikmých délek

Apriorní směrodatná odchylka měřených délek je dána výrobcem použitých teodolitů jako:

$$\sigma_d = 2mm + 2ppm. \tag{11}$$

Hodnota 2mm je konstantní pro všechny měřené délky a druhá hodnota 2ppm udává střední kilometrovou chybu, závislou na měřené délce.

Ve výpočtu zohledňujeme také odchylku z centrace přístroje $\sigma_c = 0,1mm$, z matematické redukce $\sigma_m = 0,5mm$ a odchylku při odečítání veličin pro fyzikální redukci délek $\sigma_f = 0,3mm$.

Směrodatná odchylka měřených šikmých délek se při uplatnění zákona o hromadění středních chyb spočte jako:

$$\sigma_{D1} = \sqrt{\sigma_d^2 + \sigma_c^2 + \sigma_f^2 + \sigma_m^2}.$$
 (12)

Směrodatná odchylka oboustranně měřených šikmých délek se vypočítá jako:

$$\sigma_{D2} = \frac{\sigma_{D1}}{\sqrt{2}},\tag{13}$$

kde: $\sigma_{d_{ii}}$... směrodatná odchylka jednostranně měřené vzdálenosti.

4.3.2 Směrodatné odchylky vodorovných směrů

Apriorní, nebo-li požadovaná či očekávaná, směrodatná odchylka měřeného vodorovného směru je udávána výrobcem viz. kap. 3.2. Odchylky jsou pro oba přístroje uvedeny v tabulce (tab. 1.).

	Leica TC 1700	Leica TC 1800
úhlová přesnost [mgon]	0,5	0,3

Tab. 1. Úhlová přesnost totálních stanic

Postupy pro výpočet přesnosti vodorovných směrů závisí na způsobu zaměření sítě. Pro redukovanou a neredukovanou síť platí odlišné vzorce. Dále je nutné rozlišit, zda byly směry měřeny pouze v jedné či ve dvou polohách dalekohledu. konkrétní vzorce pro výpočet směrodatných odchylek jsou uvedeny níže.

a) Redukovaný stav sítě

Měření redukované sítě provedli studenti (David Macho, Eliška Dvořáková a Jiří Gresl) na bodech Rab01 a Rab02. Jedno měření bylo s využitím všesměrných hranolů ve dvou skupinách. Druhé probíhalo pouze v jedné skupině s použitím cílených hranolů.

1. měření v jedné skupině (cílené hranoly)

Směrodatnou odchylku vodorovného směru ve dvou polohách v jedné skupině se spočte jako:

$$\sigma_{\psi_1} = \frac{\sigma_{\psi}}{\sqrt{2}},\tag{14}$$

kde: σ_{w} ... apriorní odchylka udávaná výrobcem.

2. měření ve dvou skupinách (všesměrné hranoly)

Pro měření ve dvou skupinách využiji aposteriorní směrodatnou odchylku měřeného vodorovného směru.

Odhad směrodatné odchylky vyrovnané hodnoty ${}^{1}\psi_{i}$, určené aritmetickým průměrem se vypočítá pomocí vzorce:

$$\sigma_{\psi_i} = \sqrt{\frac{w_{i1}^2 + w_{i2}^2 + \dots + w_{is}^2}{s \cdot (s - 1)}}$$
(15)

kde: w_{ii} ... opravy redukovaných směrů,

$$w_{ij} = {}^{1} \boldsymbol{\psi}_{i} - \boldsymbol{\psi}_{ij} \,. \tag{16}$$

Symbolika uvedená ve vzorcích (15) a (16) představuje:

$$i = 2, ..., k,$$

 $j = 1, ..., s,$

kde: k ... počet měřených směrů,

s ... počet skupin.

Charakteristika přesnosti měření ve dvou skupinách byla vypočtena dle vzorce pro výpočet kvadratického průměru ze směrodatných odchylek řádkového průměru:

$$\sigma_{\psi S} = \sqrt{\frac{\left(\sigma_{\psi 1}^{2} + \dots + \sigma_{\psi k}^{2}\right)}{k - 1}},$$
(17)

kde: $\sigma_{\psi i}$... střední chyba řádkového průměru.

Výslednou směrodatnou odchylku na stanovisku Rab01, popř. Rab02 udává kvadratický průměr směrodatných odchylek jednotlivých stanoviskách.

b) Neredukovaný stav sítě

Změřením sítě na všech čtyřech bodech, tzn. v neredukovaném stavu, vzniknou dva trojúhelníky (Rab01 - Rab02 - Rab03, Rab01 - Rab02 - Rab05). Při měření v 10. etapě zůstal pouze jeden trojúhelník (Rab01 - Rab 02 - Rab03). Grafické znázornění sítě je na schématu (obr. 13). Směrodatná odchylka měřeného vodorovného směru se pak spočítá z Ferrerova vzorce:

$$\sigma_{\psi} = \sqrt{\frac{\sum_{i=1}^{n} U_i^2}{6n}},$$
(18)

kde: U_i ... trojúhelníkové uzávěry,

n ... počet trojúhelníků.

Hodnota vystihuje vnější přesnost měření, tj. s uvážením viditelnosti, refrakce, vibrací ovzduší, změn osvětlení a mikrozměn postavení, ovšem bez vlivu centrace.

4.3.3 Směrodatné odchylky zenitových úhlů

Pro charakteristiku přesnosti měřených zenitových úhlů byly aplikovány směrodatné odchylky měřených vodorovných směrů.

4.3.4 Hodnoty směrodatných odchylek

Výsledné hodnoty směrodatných odchylek šikmých délek a vodorovných směrů jsou uvedeny v následujícím textu a tabulkách. Veškeré výpočty jsou dle vzorců z kapitoly 4.3.2. V této kapitole je vysvětlena i symbolika použitá níže.

9. etapa

Směrodatné odchylky měřených šikmých délek.

mezi body	přibližné délky	σ_{d}	$\sigma_{d_{y}}$	$\sigma_{\scriptscriptstyle D}$
mozi bouy	[m]	[mm]	[mm]	[mm]
Rab 01-02	368	2,7	2,8	2,0
Rab 01-03	419	2,8	2,9	2,1
Rab 01-05	405	2,8	2,9	2,1
Rab 02-03	666	3,3	3,4	2,4
Rab 02-05	354	2,7	2,8	2,0

Tab. 2. Směrodatné odchylky vzdáleností, 9. etapa.

Směrodatné odchylky měřených vodorovných směrů.

a) Redukovaný stav sítě

1. měření v jedné skupině (cílené hranoly)

Pro přístroj Leica TC 1700:	$\sigma_{\psi} = 0.5 mgon$
	$\sigma_{\psi 1} = 0,35mgon$
Pro přístroj Leica TC 1800:	$\sigma_{\psi} = 0,3mgon$ $\sigma_{\psi 1} = 0,21mgon$

2. měření ve dvou skupinách (všesměrné hranoly)

Tab. 3. Směrodatné odchylky měřených vodorovných směrů,

David Macho,	stanovisko	Rab01
--------------	------------	-------

cmŏr	1. skupina	2. skupina	průměr	w ₁	W2	$\sigma_{\mathbf{y}_{i}}$	σ_{y}
Sinor	[gon]	[gon]	[gon]	[mgon]	[mgon]	[mgon]	[mgon]
Rab 01-03	229,4926	229,4931	229,4928	0,2	-0,3	0,25	
Rab 01-05	297,2165	297,2158	297,2162	-0,3	0,4	0,35	0,94
Rab 01-02	358,1916	358,1891	358,1904	-1,2	1,3	1,25	

Tab. 4. Směrodatné odchylky měřených vodorovných směrů,

směr	1. skupina	2. skupina	průměr	w_1	w_2	σ_{y_i}	σ_y
011101	[gon]	[gon]	[gon]	[mgon]	[mgon]	[mgon]	[mgon]
Rab 02-01	148,1612	148,1604	148,1608	-0,4	0,4	0,40	
Rab 02-03	186,6068	186,6042	186,6055	-1,3	1,3	1,30	0,97
Rab 02-05	223,5019	223,5022	223,5021	0,2	-0,1	0,16	

David Macho, stanovisko Rab02

Tab. 5. Směrodatné odchylky měřených vodorovných směrů,

směr	1. skupina	2. skupina	průměr	W1	w_2	$\sigma_{\mathbf{y}_{1}}$
smér	[gon]	[gon]	[gon]	[mgon]	[mgon]	[mgon]
Rab 01-03	271,2985	271,2982	271,2984	-0,1	0,2	0,16

339,0227

399,9992

339,0212

399,9988

339,0241

399,9996

Rab 01-05

Rab 01-02

 σ_{y} [mgon]

1,07

1,45

0,40

-1,5

0,4

-1.4

-0,4

Eliška Dvořáková, stanovisko Rab01

Tab. 6. Směrodatné odchylky měřených vodorovných směrů,

směr	1. skupina	2. skupina	průměr	w_1	w_2	$\sigma_{\mathbf{y}_i}$	$\sigma_{_{\!$
311101	[gon]	[gon]	[gon]	[mgon]	[mgon]	[mgon]	[mgon]
Rab 02-01	148,3679	148,3665	148,3672	-0,7	0,7	0,70	
Rab 02-03	186,8101	186,8102	186,8102	0,1	0,0	0,07	0,50
Rab 02-05	223,7106	223,7106	23,7106	0,0	0,0	0,00	

Eliška Dvořáková, stanovisko Rab02

Tab. 7. Směrodatné odchylky měřených vodorovných směrů,

Jiří Gresl, stanovisko Rab01

směr	1. skupina	2. skupina	průměr	w ₁	W2	$\sigma_{\mathbf{y}_{i}}$	σ_{y}
511101	[gon]	[gon]	[gon]	[mgon]	[mgon]	[mgon]	[mgon]
Rab 01-03	16,6131	16,6140	16,6136	0,5	-0,4	0,45	
Rab 01-05	84,3396	84,3383	84,3390	-0,6	0,7	0,65	0,80
Rab 01-02	145,3135	145,3151	145,3143	0,8	-0,8	0,80	

směr	1. skupina	2. skupina	průměr	w ₁	w_2	$\sigma_{\mathbf{y}_{1}}$	σ_{y}
	[gon]	[gon]	[gon]	[mgon]	[mgon]	[mgon]	[mgon]
Rab 02-01	148,3936	148,3924	148,3930	-0,6	0,6	0,60	
Rab 02-03	186,8377	186,8378	186,8378	0,1	0,0	0,07	0,77
Rab 02-05	223,7364	223,7346	223,7355	-0,9	0,9	0,90	

Tab. 8. Směrodatné odchylky měřených vodorovných směrů,Jiří Gresl, stanovisko Rab02

Pomocí kvadratického průměru směrodatných odchylek na obou stanoviscích byla vypočtena výsledná směrodatná odchylka vodorovného směru měřeného na všesměrné hranoly a ve dvou polohách. Hodnoty těchto odchylek jsou uvedeny v tabulce 9.

Tab. 9. Výsledné směrodatné odchylky

měřič	$\sigma_{y_{\tau}}$	
lineite	[mgon]	
David Macho	0,95	
Eliška Dvořáková	0,83	
Jiří Gresl	0,78	

Konkrétní dosažené hodnoty směrodatných odchylek vodorovných směrů můžeme analyzovat. Použijeme test významnosti, který je nástrojem rozboru výsledků. výchozím předpokladem testování často bývá nulová hypotéza, která předpokládá, že rozdíl mezi hodnocenými soubory je statisticky nevýznamný.

Pro výpočet jsem zvolila test shody přesnosti dvou souborů (F-test). Princip testu spočívá v tom, že máme dány dva soubory s n_1 a n_2 pozorováními, charakterizované směrodatnými odchylkami σ_1 a σ_2 , se stupni volnosti $n_1' = (n_1 - 1)$ a $n_2' = (n_2 - 1)$. Soubory jsou řazeny a indexovány tak, aby platilo:

$$\sigma_{1}^{2} > \sigma_{2}^{2}$$
.

Položíme nulovou hypotézu shody přesnosti obou souborů a vypočteme tzv. testovací kritérium:

$$F = \frac{\sigma_1^2}{\sigma_2^2}.$$

Pro testování použiji největší a nejmenší směrodatnou odchylku měřeného vodorovného směru pro dvě polohy a dvě skupiny. V našem případě jsou to odchylky 0,95mgon a 0,75mgon. Výsledek testovacího kritéria je 1,48.

Na zvolené významnost $\alpha = 5\%$ je kritická hodnota F_{α} 5,9. Následuje samotné testování

$$F > F_{\alpha}$$

Pokud je splněna nerovnost, nelze nulovou hypotézu zamítnout - oba soubory jsou výběry téhož základního souboru stejné přesnosti. Můžeme prohlásit, že všechny přesnosti jsou ze stejného souboru pozorování.

b) Neredukovaný stav sítě

Směrodatná odchylka se vypočte z úhlových uzávěrů: *-1,6mgon* (pro trojúhelník Rab01 - Rab02- Rab03) a +0,9mgon (pro trojúhelník Rab01 - Rab02 - Rab05).

Mezní hodnota uzávěru je dána vzorcem:

$$d_{\max} = u \cdot \sigma_{\omega^2} \sqrt{3} , \qquad (19)$$

kde: *u* ... koeficient spolehlivosti,

 σ_{ω^2} ... směrodatná odchylka vodorovného směru (měření ve 2 skupinách).

Směrodatná odchylka vodorovného směru byla empiricky určena z 0.-4. etapě. Její hodnota je 0,72mgon pro měření v jedné skupině. Ve dvou skupinách dosahuje hodnoty 0,51mgon. Dosazením do vzorce (19) jsem vypočítala mezní hodnotu úhlového uzávěru 2,21mgon. Vzájemným porovnáním mezní hodnoty úhlového uzávěru a dosažených uzávěrů v 9. etapě můžeme prohlásit, že měření vyhovují.

Koeficient spolehlivosti byl zvolen 2,5, jelikož při měření byly zaznamenány vibrace.

Výsledná směrodatná odchylka je:

$$\sigma_{w1} = 0,53 mgon$$
.

10. etapa

Směrodatné odchylky měřených šikmých délek.

mezi body	přibližné délky	σ_{d}	$\sigma_{d_{u}}$	$\sigma_{\scriptscriptstyle D}$
mezi bouy	[m]	[mm]	[mm]	[mm]
Rab 01-02	368	2,7	2,8	2,0
Rab 01-03	419	2,8	2,9	2,1
Rab 02-03	666	3,3	3,4	2,4

Tab. 10. Směrodatné odchylky vzdáleností, 10. etapa.

Směrodatné odchylky měřených vodorovných směrů.

V 10. etapě byla síť zaměřena v neredukovaném stavu na bodech Rab01 - Rab02 - Rab03. Z tohoto měření vzniknul jeden trojúhelník a byla vypočítaná směrodatná odchylka pomocí Ferrerova vzorce (18). Hodnota úhlového uzávěru vyšla -*1,9mgon*.

Dosažená hodnota úhlového uzávěru nepřesahuje mezní hodnotu, tudíž měření opět vyhovuje.

Směrodatná odchylka vodorovného směru v neredukovaném stavu je:

 $\sigma_{\psi 1} = 0,78 mgon$.

5 VYROVNÁNÍ PROSTOROVÉ SÍTĚ

Zdrojem informací k vyrovnávacímu počtu byly [10], [11] a [12].

Místní prostorovou síť jsem vyrovnávala jako volnou s pevným bodem a daným směrem. Pevným bodem je Rab01 a určující směr je vložen z bodu Rab01 na Rab03, do tohoto směru je vložena souřadnicová osa +X' (obr.16). Souřadnice bodu Rab01 (Y'=1000, X'=5000, Z'=250) byly zvoleny tak, aby všechny souřadnice bodů měly kladné hodnoty.

Volba souřadnicového systému není náhodná. Je volená v souladu s průběhem terénu a je totožná s předchozími etapami. V takto zvolené souřadnicové soustavě osa +X' jde po horizontále a osa +Y' jde přibližně ve směru spádu terénu.

Obr. 16. Náčrt místní sítě Rabenov

5.1 TEORIE VYROVNÁNÍ

K vyloučení hrubých chyb a ke zvýšení přesnosti konečného výsledku měření opakujeme měření neznámé veličiny nebo měříme další veličiny, které jsou s neznámými veličinami ve známém vzájemném vztahu. Jestliže je hledaná (určovaná) veličina měřena několikrát za různých podmínek, tzn. že je měřena různými metodami, různě přesnými přístroji a pomůckami, měří různí pozorovatelé nebo se liší vnější podmínky při měření, nejsou výsledky jednotlivých měření stejně přesné.
Otázkou zůstává jaká je pravá hodnota měřené veličiny. Jestliže bylo v rámci geodetické úlohy změřeno více veličin než je nutný počet pro určení neznámých je možné řešit úlohu pomocí vyrovnání. V důsledku působení nahodilých chyb nelze ze všech měření získat jednoznačný výsledek. Aby všechna měření odpovídala jedinému výsledku, je nutné měření změnit (opravit). Možností těchto změn je prakticky neomezené množství a pro jedno konkrétní řešení je nutné svázat měření nějakou podmínkou. Vyrovnání pak znamená vypočítat takové změny (opravy), které vyhovují dané podmínce.

Způsoby vyrovnání můžeme zhruba rozdělit do čtyř skupin:

a) vyrovnání měření přímých,

kde jediná neznámá veličina byla nezávisle měřena vícekrát za sebou,

b) vyrovnání měření zprostředkujících,

kde se více neznámých veličin nepřímo "měří" prostřednictvím přímého měření jiných veličin, které jsou s neznámými ve známém funkčním vztahu,

- c) vyrovnání měření podmínkových,
 kde se jednotlivé veličiny měří přímo, avšak současně mají splnit předem danou
 matematickou nebo geometrickou podmínku.
- d) složitější, kombinované způsoby.

Vzhledem k tomu, že souřadnice nejsou v geodézii měřeny přímo (s výjimkou např. digitalizace), jsou pro vyrovnání geodetických úloh rozhodující dva způsoby vyrovnání, a sice vyrovnání zprostředkujících a vyrovnání podmínkových měření. Oba způsoby vyrovnání dají stejné hodnoty vyrovnání měření, počet normálních rovnic je u obou způsobů odlišný. U vyrovnání zprostředkujících se rovná počtu určovaných souřadnic, u podmínkových je stejný jako počet nadbytečných měření. Výsledky vyrovnání neboli vektory získané řešením normálních rovnic jsou u obou způsobů různé.

Pro vyrovnání se v drtivé většině případů v geodézii užívá metoda nejmenších čtverců (MNČ). Právě časté a téměř výlučné užívání této metody vede k představě o její univerzálnosti. MNČ má však vedle svých nesporných výhod i určité nevýhody, na které je dobré při jejím užívání pamatovat.

- Výhody MNČ:
- jednoduchý výpočet, který vede k lineárním rovnicím,
- nepřipouští příliš velké opravy a výsledky se tedy příliš neodlišují od měření,
- všeobecná znalost daná častým používáním.

Nevýhody MNČ:

- "rovnoměrný charakter" oprav neumožňuje odhalit odlehlá měření,

rozdělení oprav může být v rozporu s přesností měřených veličin i v rozporu s geodetickou zkušeností.

5.1.1 Podstata metody nejmenších čtverců

Nejspolehlivější hodnoty neznámých (hledaných) veličin jsou podle MNČ ty, které mají nejmenší matematickou pravděpodobnost. Vyrovnanou (nejpravděpodobnější) hodnotu měřené veličiny označme x. Opravy v, to jsou rozdíly mezi nejpravděpodobnější hodnotou x a naměřenými výsledky, jsou:

$$v_1 = x - l_1, v_2 = x - l_2 \dots v_n = x - l_n$$

Hodnota *x* určuje velikost oprav v_1, v_2 (se změnou *x* dojde i ke změně oprav *v*). Máli být *x* nejpravděpodobnější hodnotou, musí být nejpravděpodobnější i opravy *v*. Za nejpravděpodobnější opravy v_i považujeme takové opravy v, pro které platí vztah:

$$p_1 v_1^2 + p_2 v_1^2 + \dots + p_n v_n^2 = \min$$

Toto je základní podmínka vyrovnání metodou nejmenších čtverců, kterou stručně zapisujeme:

$$[pvv] = \min$$

Metoda nejmenších čtverců umožňuje získat nejpravděpodobnější hodnoty neznámých, mají-li měřické chyby normální rozdělaní. Předpokládáme tedy, že systematické složky chyb byly eliminovány a měření je zatíženo pouze náhodnými chybami.

5.1.2 Váhy měření

Při vyrovnání geodetické úlohy vstupují do vyrovnání různorodé veličiny měřené s různou přesností. Říkáme, že jednotlivá měření nemají stejnou váhu. Jestliže počítáme hledanou veličinu z různě přesných měření, musíme váhy jednotlivých měření zavádět do výpočtu. Při vyrovnání je dobré o vahách vědět:

1. umožňují zohlednit různou přesnost jednotlivých měření,

2. umožňují vyrovnávat společně úhly a délky.

Váhy jsou poměrná čísla, která kvalitativně hodnotí dosažený výsledek měření. Chceme, aby přesnější měření se ve vyrovnané veličině uplatnila více. Proto je zřejmá závislost na směrodatné odchylce. Váhy definujeme:

$$p_i = \frac{K}{\sigma_i^2},\tag{20}$$

kde: K... vhodně zvolená konstanta.

Z definice vyplývá vztah, že součin váhy a čtverce střední chyby je v řadě měření konstantní. Když do tohoto vztahu teoreticky zavedeme takové měření, pro které $p_0 = 1$ říkáme, že tomuto měření odpovídá tzv. jednotková směrodatná odchylka σ_0 .

Obecný vztah pro volbu vah je:

$$p_i = \frac{\sigma_0^2}{\sigma_i^2},\tag{21}$$

kde: p_i ... váha měřené veličiny,

 σ_i ... směrodatná odchylka měřené veličiny,

 σ_0 ... směrodatná odchylka jednotková.

Volba vah sice ovlivňuje výsledky vyrovnání, ale u běžných konfigurací sítí a rozumných přesností měření není toto ovlivňování nijak dramatické. malá změna jednotlivé váhy neovlivní výsledek, protože váhy ovlivňují vyrovnání svým poměrem. Váhy nezachrání přesnost měření. Představa, že méně přesné měření se "vylepší" pomocí vah, je mylná.

Při výpočtu napřed zvolíme vhodnou jednotkovou váhu tak, aby ostatní váhy nebyla čísle příliš velká nebo malá.

5.2 VYROVNÁNÍ MÍSTNÍ SÍTĚ RABENOV

K vyrovnání sítě byl využit software GNU GaMa/Rocinante. Tento program je vytvořený v rámci projektu GNU General Public Licence. Projekt je věnovaný vyrovnání geodetických volných sítí (akronym Gama je vytvořen ze slov geodézie a mapování). GNU Gama je napsána v C++ a v současnosti podporuje pouze vyrovnání v lokální kartézské soustavě. Na projektu se začalo pracovat v roce 1998 na katedře kartografie a mapování, stavební fakulty ČVUT v Praze. Program je volně přístupný.

Po spuštění programu a založení nového souboru se rozhodneme mezi 3D sítí (prostorovou), 2D sítí (rovinnou) a 1D sítí (nivelace - pouze výškové rozdíly) nebo pouze protokol.

Program umožňuje následující funkce:

- vytváření, nahrávání a ukládání sítě,

přidávání, editaci a mazání bodů, přičemž bod můžeme nastavit jako pevný, volný nebo opěrný

- přidávání, editaci a mazání měření,

- je možné vložit měření: směr (direction)

vodorovnou vzdálenost (distance) úhel (angle) šikmá vzdálenost (s-distance) zenitový úhel (z-angle) souřadnicové rozdíly (dh)

- nastavení parametrů sítě,

- výsledný protokol řešení sítě.

V našem případě použiji způsob vyrovnání zprostředkujících měření, protože změřené hodnoty jsou s neznámými souřadnicemi bodů ve vzájemném vztahu. Vstupními hodnotami vstupující do vyrovnání jsou měřené veličiny, redukované na spojnici stabilizačních značek, jejich směrodatné odchylky a přibližné souřadnice bodů sítě.

Program řeší vyrovnání sítě na základě zlinearizovaného modelu, který je daný vztahem:

$$D \cdot v = w = A \cdot h - l, \qquad (22)$$

za platnosti podmínky MNČ:

 $v^T * Pv \leftrightarrow w^T Pw = \min$.

Model se řeší za doplňujících podmínek na opravu přibližné konfigurace, které je možno zapsat ve tvaru:

 $G \cdot h = 0.$

Je-li počet doplňujících podmínek roven počtu nutných podmínek pro umístění sítě v E_3 , jedná se o řešení tzv. volné sítě. V případě, že je počet větší, jde o tzv. síť vázanou.

Symbolika uvedená v předešlých rovnicích bude postupně vysvětlena v této kapitole.

1. Matice A (m,n)

Matice A je Jacobiho matice zvaná modelová matice lineárního vztahu mezi zprostředkujícími (m) a konfiguračními (n) parametry. Prvky matice A jsou derivace zprostředkujících veličin (vyjádřených pomocí konfiguračních veličin) podle jednotlivých konfiguračních veličin. Matice je tvořená blokově ze submatic prostorových délek A_D , zenitových úhlů A_Z a prostorových úhlů A_U .

$$A = \begin{bmatrix} A_D \\ A_Z \\ A_U \end{bmatrix}.$$
 (23)

2. Vektor absolutních členů *l* (m,1)

Zápis blokového vektoru l má obdobnou strukturu jako matice A, m je počet zprostředkujících parametrů.

$$l = \begin{bmatrix} l_D \\ l_Z \\ l_U \end{bmatrix}.$$
(24)

Zprostředkující parametry uvedené v matici jsou dány vztahy:

$$l_{D} = d_{ij} - d_{ij} \,[\text{mm}], \tag{25}$$

kde: ${}^{*}d_{ij}$... měřená délka,

$${}^{O}d_{ii}$$
 ... délka vypočtená z přibližných souřadnic.

$$l_{z} = {}^{*}Z_{ij} - {}^{0}Z_{ij} \quad [0,0001\text{gon}], \tag{26}$$

kde: ${}^{*}Z_{ij}$... měřený zenitový úhel,

 $^{O}Z_{ii}$... zenitový úhel vypočtený z přibližných souřadnic.

$$l_{D} = {}^{*}\Omega_{ijk} - {}^{O}\Omega_{ijk}$$
 [0,0001gon], (27)

kde: $^{*}\Omega_{iik}$... prostorový úhel vypočtený z měřených parametrů,

 $^{O}\Omega_{_{iik}}$... prostorový úhel vypočtený z přibližných souřadnic.

3. Matice $D(\mathbf{m}, \mathbf{r})$

Jedná se o Jacobiho matici vztahů mezi parametry měřenými (r) a zprostředkujícími (m). Prvky matice *D* jsou tedy derivace zprostředkujících veličin (vyjádřených pomocí měřených veličin) podle jednotlivých měřených veličin.

Modelová matice má tvar:

$$D = diag.(E_D, E_Z D_U).$$
⁽²⁸⁾

Submatice E_D (m_1, r_1) a rovněž E_Z (m_2, r_2) jsou jednotkového typu. Hodnoty $m_1 = r_1$ a $m_2 = r_2$ jsou dány počtem měřených délek a zenitových úhlů.

Submatice $D_U(m_3, r_3)$ má následující diagonální tvar:

$$D_{U} = diag.(D_{U1},...,D_{UK}).$$
(29)

Prvky této matice jsou derivace zprostředkujících prostorových úhlů, podle měřených geometrických parametrů, vodorovných směrů a zenitových vzdáleností na jednotlivých bodech sítí.

4. Matice vah

a) Matice vah měřených geometrických parametrů P (r,r)

Matice vah měření je diagonální, kde těmito diagonálními prvky jsou váhy měření (předpokládáme, že výsledek měření jednoho prvku nezávisí na výsledku dalšího měření - měření jsou nezávislá). Měřené prvky nejsou obecně homogenními veličinami, proto se provádí homogenizace měření přiřazením vah každému měřenému prvku. Váhy se určí ze vztahu (20).

b) Matice vah zprostředkujících parametrů P(m,m)

Matice je dána zákonem přenášení vah podle vzorce:

$$P = \left(D^* P^{-1} \cdot D^T \right)^{-1}. \tag{30}$$

Prvky matice, se zřetelem na tvar Jacobiho matice D a diagonální tvar matice *P , mají tvar:

$$P = diag.({}^{*}P_{D}, {}^{*}P_{Z}, P_{U1}, ..., P_{UK})$$

、 .

Submatice *P_D a *P_Z jsou tvaru (m_1, m_1) , resp. (m_2, m_2) , kde m_1 a m_2 je počet měřených délek, resp. měřených zenitových úhlů. Submatice P_{US} , $s \in \langle 1, k \rangle$, je typu (m_{3S}, m_{3S}) , kde m_{3S} je počet prostorových úhlů na bodě s.

5. Podmínková matice G (p,n)

Matice G je Jacobiho maticí soustavy $G \cdot h = 0$. V jednotlivých řádcích matice jsou buď koeficienty lineárních funkcí, nebo, pokud funkce nejsou lineární, koeficienty jejich lineárních rozvojů. Hodnota p vyjadřuje počet podmínek na opravu přibližné konfigurace. Pomocí podmínkové matice G můžeme umístit síť v prostoru. Minimální počet podmínek jsou čtyři.

Podmínkovou matici lze realizovat různými způsoby. Často se v geodézii užívá Helmertova transformace přibližné konfigurace na konfiguraci vyrovnanou.

6. Vektor oprav souřadnic h

Vektor oprav konfiguračních parametrů se určí ze vztahu:

$$h = N^{-1} \cdot A^T \cdot P \cdot l \,. \tag{31}$$

Inverzní matice N^{-1} soustavy normálních rovnic je dána vztahem:

$$N^{-1} = (A^T \cdot P \cdot A + G^T \cdot G)^{-1}$$

Z přibližných souřadnic bodů sítě a vektoru oprav se pak určí vyrovnané souřadnice: $x = {}^{0}x + h$. (32)

7. Výpočet oprav zprostředkujících parametrů w

Opravy zprostředkujících parametrů se vypočtou ze vztahu:

$$w = A \cdot h - l \,. \tag{33}$$

Druhý, kontrolní výpočet oprav se vypočítá z rozdílů vyrovnaných a přibližných parametrů:

 $w = {}^{1}s - {}^{*}s$,

kde: ¹s ... vektor zprostředkujících parametrů vypočtený z vyrovnaných souřadnic,

**s* ... vektor zprostředkujících parametrů vypočtený z měření.

8. Výpočet oprav měřených geometrických parametrů v

Opravy jsou dány vztahem:

$$v = {}^{*}P^{-1} \cdot D^{T} \cdot P \cdot (A \cdot h - l).$$
(34)

Na základě oprav ze vzorce (49) můžeme spočítat vyrovnané měřené geometrické parametry podle vzorce:

$$t^{1}t^{*}t + v$$
. (35)

9. Výpočet aposteriorní jednotkové směrodatné odchylky

Lze ji vypočítat ze znalosti vektoru oprav, a to podle vzorce:

$$m_0 = \sqrt{\frac{v^T \cdot P \cdot v}{m - n + p}},\tag{36}$$

kde: m ... počet zprostředkujících veličin,

n ... počet neznámých,

p ... počet podmínek na opravu přibližné konfigurace.

10. Kovarianční matice měřených geometrických parametrů ${}^{*}M_{t}$ (r,r)

Kovarianční matice je typu (r,r), na hlavní diagonále najdeme kvadráty směrodatných odchylek měřených geometrických parametrů. Matici je možné zapsat ve tvaru:

$${}^{*}M_{t} = \sigma^{2} \cdot {}^{*}P^{-1}.$$
(37)

11. Kovarianční matice vyrovnaných konfiguračních parametrů ${}^*M_{\chi}$

Při znalosti kovarianční matice ${}^{*}M_{t}$ je tato matice je dána vztahem:

$${}^{1}M_{x} = \sigma_{0}^{2} \cdot (K \cdot {}^{*}P^{-1} \cdot K^{T}), \qquad (38)$$

kde: $K = N^{-1} \cdot A^T \cdot P$.

12. Kovarianční matice vyrovnaných měřených parametrů ${}^{1}M_{t}$

Matice je dána vztahem:

$${}^{1}M_{t} = \sigma_{0}^{2} \cdot (L^{*}P^{-1} \cdot L^{T}), \qquad (39)$$

kde: $L = E_T - P^{-1} \cdot D^T \cdot (D - A \cdot K)$,

 E_T je jednotková matice typu (r, r).

Z variací diagonálních prvků kovariančních matic ${}^{*}M_{x}$ a ${}^{1}M_{t}$ je možné určit směrodatné odchylky vyrovnaných souřadnic bodů prostorové sítě, resp. vyrovnaných měřených parametrů.

Vyrovnání jsem provedla pomocí zmiňovaného softwaru Rocinante. Po otevření nového souboru jsem zvolila 3D prostorovou síť. Zadala jsem přibližné souřadnice bodů Rab01, Rab02, Rab03 a Rab05 (obr. 17). V okně měření jsem vložila stanoviskové body a postupně zadala měřené veličiny převedené na rovnoběžku se spojnicí stabilizačních značek a jejich směrodatné odchylky z kapitoly 4.3.4 (obr. 18).

Rocinante 1.0).0 - [Networ	k - noname.gl	d]				
Eile Points	Eile Points Observations Network Windows Help					_15 ×	
🖻 🚅 🖪 🖉	∍ \? ∐⇒	20	×				
<u> </u>	StatID	Y	Х	Z	type		
	🔗 Rab01	1000_00000	5000.00000	250.00000	fixed		
Points	Rab02	1327.81870	4841.32590	197.71640	free		
	Rab03	1000.00000	5419.06200	251.76740	constr		
	Rab05	1350.26840	5194.54100	192.22900	tree		
Measure							
All							
9							
Network							
-							
Solvo							
Solve							
M +							
							10

Obr. 17. Vstup bodů do softwaru Rocinante

☐ <u>File</u> Points	<u>Observations</u>	<u>N</u> etwork	<u>W</u> indows <u>H</u> el	р		<u>_181 ></u>
🖹 ጅ 🖪	🖻 📢 📑 🔌	V1 .	¢			
A -	From	To	type	value	stdDev	<u> </u>
1	StandPoint	Rab01				
Points	Rab01	Rab02	Direction	145.317800	4.8	
. on to	- 🎸 Rab01	Rab02	S_Distance	367.93560	2.8	
	i 🎸 🖓 🖗	Rab02	Z_Angle	109.077100	4.8	
	- 🎸 Rab01	Rab03	Direction	16.619600	4.8	
Measure	- 🎸 Rab01	Rab03	S_Distance	419.06680	2.9	
200.0 N	- 🎸 Rab01	Rab03	Z_Angle	99.731500	4.8	
M	Rab01	Rab05	Direction	84.344000	4.8	
	Rab01	Rab05	S_Distance	404.81170	2.9	
All	Rab01	Rab05	Z_Angle	109.116400	4.8	
	StandPoint	Rab02				
E.	Rab02	Rab01	Direction	148.278800	4.8	
1	Rab02	Rab01	S_Distance	367.93460	2.8	
Network	Rab02	Rab01	Z_Angle	90.930800	4.8	-
	Rab02	Rab03	Direction	186.724500	4.8	
Q*	Rab02	Rab03	S_Distance	666.45870	3.4	
6 N	Rab02	Rab03	Z_Angle	94.835500	4.8	
Solve	Rab02	Rab05	Direction	223.621000	4.8	
00	Rab02	Rab05	S_Distance	353.97610	2.8	
(0)	Rab02	Rab05	Z_Angle	100.990400	4.8	
	StandPoint	Rab03				
Draw 👻	📕 🤣 Rab03	Rab01	Direction	362.447400	4.8	•

Obr. 18. Vstup měření do softwaru Rocinante

V 9. etapě byla síť zaměřena 1x v nerukovaném stavu, 3x v redukovaném stavu na všesměrné hranoly a 3x v redukovaném stavu na cílené hranoly. Každé měření bylo vyrovnáno samostatně. V 10. etapě byly vstupem do vyrovnání hodnoty zaměřené z bodů Rab01, Rab02 a Rab03.

Výsledné vyrovnané souřadnice terestrického měření jsou uvedeny v tabulce (tab. 11 a tab. 12). Výsledné souřadnice z 9.etapy a jejich směrodatné odchylky jsem spočetla jako vážený kvadratický průměr s váhou $P_i = \frac{1}{\sigma_{x_i}}$.

$$X = \sqrt{\frac{\sum_{i=1}^{i} (X_{i}^{2} + P_{i}^{2})}{\sum_{i=1}^{i} (P_{i}^{2})}}, \qquad \sigma_{X} = \sqrt{\frac{\sum_{i=1}^{i} (\sigma_{X_{i}}^{2} + P_{i}^{2})}{\sum_{i=1}^{i} (P_{i}^{2})}}.$$

	9.etapa	3
bod	souřadnice [m]	směrodatná odchylka [mm]
X Radol	5000,0000	-
Y_{Rad01}	1000,0000	-
Z _{Rað01}	250,0000	-
$X_{\rm Rad02}$	4841,3248	3,0
Y _{Rað} 02	1327,8213	2,5
Z Rado2	197,7426	2,2
X _{Rad03}	5419,0622	2,2
Y _{Rað03}	1000,0000	-
Z _{Rað} 03	251,7706	3,2
X Rados	5194,5461	3,3
Y _{Rados}	1350,2684	2,6
Z _{Rað} os	192,2356	2,7

Tab. 11. Vyrovnané souřadnice a jejich směrodatné odchylky 9. etapa

Tab. 12. Vyrovnané souřadnice a jejich směrodatné odchylky 10. etapa

	10. eta	apa
bod	souřadnice [m]	směrodatná odchylka [mm]
X _{Rad01}	5000,0000	-
Y _{Rað01}	1000,0000	-
Z _{Rað01}	250,0000	-
Х _{Rað02}	4841,3210	3,3
Y Rad02	1327,8234	2,8
Z _{Rað02}	197,7322	2,9
X Rad03	5419,0619	1,9
Ү _{Rað03}	1000,0000	-
Z _{Rað03}	251,7628	3,1

6 POROVNÁNÍ ETAPOVÝCH MĚŘENÍ

Potřebné informace a výsledky předchozích etap jsem čerpala z [1] a [2].

Po výpočtu obou etap v programu Rocinante získávám vyrovnané souřadnice stanoviskových bodů. Porovnávám hodnoty souřadnic v lokální síti s 0. a předcházející etapou. Jelikož byl bod Rab01 při výpočtu vyrovnání sítě použit v každé etapě jako pevný, jeho souřadnice se nemění (nevyrovnávají se). Podobně to platí i pro y-ovou souřadnici bodu Rab03.

V následujících tabulkách jsou uvedené vyrovnané souřadnice a jejich porovnání s ostatními etapami.

a) Porovnání 8. a 9. etapy

bod	8. etapa	9. etapa	rozdíl mezi 8. a 9. etapou
	[m]	[m]	[mm]
X Rad02	4841,3516	4841,3248	-26,8
Y _{Rað} 02	1327,8351	1327,8213	-13,8
Z _{Rað02}	197,7575	197,7426	-14,9
X _{Rad03}	5419,0830	5419,0622	-20,8
Z _{Rad03}	251,7644	251,7706	6,2
X Rados	5194,5811	5194,5461	-35,0
Y _{Rað} os	1350,2400	1350,2684	28,4
Z _{Rað05}	191,7144	192,2356	-521,2

Tab. 13. *Porovnání* 8. a 9. *etapy*

Velký rozdíl v Z souřadnici bodu Rab05 byl pravděpodobně způsoben nesprávným změřením výšky stanoviska a cíle v jedné z etap. Na obrázku (obr. 19) je zdokumentovaný bod Rab05 v 9. etapě. Dle fotografie se domnívám, že výška přibližně 0,585m byla změřena k vršku novodurové trubky. Kdežto v předchozí 8. etapě byla tato výška změřena k betonovému základu.

Obr. 19. Stabilizace bodu Rab05

b) Porovnání 0. a 9. etapy

Tab. 14.	Porovnání	О. с	ı 9.	etapy
----------	-----------	------	------	-------

bod	0. etapa	9. etapa	rozdíl mezi 0. a 9. etapou
	[m]	[m]	[mm]
X _{Rað02}	4841,3709	4841,3248	-46,1
Y _{Rað02}	1327,7972	1327,8213	24,1
Z _{Rað02}	197,7200	197,7426	22,6
X _{Rað03}	5419,0434	5419,0622	18,8
Z _{Rað03}	251,8493	251,7706	-78,7
X Rados		5194,5461	-
Y _{Rað} os	bod neměřen	1350,2684	-
Z Rados	nomoron	192,2356	-

c) Porovnání 9. a 10. etapy

bod	9. etapa	10. etapa	rozdíl mezi 0. a 9. etapou
	[m]	[m]	[mm]
X _{Rað02}	4841,3248	4841,3210	-3,8
Y _{Rað02}	1327,8213	1327,8234	2,1
Z Rado2	197,7426	197,7322	-10,4
X _{Rad03}	5419,0622	5419,0619	-0,3
Z _{Rað03}	251,7706	251,7628	-7,8
X _{Rad05}	5194,5461		-
Y _{Rað} os	1350,2684	bod poničen	-
Z Rados	192,2356	P	-

Tab. 15. *Porovnání* 9. a 10. etapy

d) Porovnání 0. a 10. etapy

V 0. etapě nebyl bod Rab05 zbudován. Mezi 9. a 10. etapou došlo k poničení tohoto bodu, proto na něm již nebudou probíhat měření. V tomto vyrovnání tudíž bod Rab05 neuvádím.

bod	0. etapa	10. etapa	rozdíl mezi 0. a 9. etapou
	[m]	[m]	[mm]
X Rad02	4841,3709	4841,3210	-49,9
Y _{Rað02}	1327,7972	1327,8234	25,9
Z _{Rad02}	197,7200	197,7322	12,2
X _{Rad03}	5419,0434	5419,0619	18,5
Z Rad03	251,8493	251,7628	-86,5

Tab. 16. *Porovnání* 0. a 10. *etapy*

e) Posuny bodů vzhledem k základní (nulté) etapě

Poloha bodu Rab01 je pevná, tudíž se jeho poloha nemění. V následující tabulce jsou uvedeny posuny bodů Rab02 a Rab03.

		Rab02			Rab03	
etapa	Δx	Δy	Δz	ΔπΧ	Δγ	Δz
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
1. etapa	23,6	35,5	-2,5	2,6	0,0	-1,9
2. etapa	-4,8	36,8	-13,9	12,6	0,0	-51,7
3. etapa	-6,6	114,4	-15,5	35,3	0,0	-66,7
4. etapa	33,0	4,8	0,5	35,0	0,0	-61,5
5. etapa	-31,6	31,5	-19,6	32,6	0,0	-61,9
6. etapa	-33,4	41,0	-26,7	41,3	0,0	-77,4
8. etapa	-19,3	37,9	37,5	39,6	0,0	-84,9
9. etapa	-46,1	24,1	22,6	18,8	0,0	-78,7
10. etapa	-49,9	25,9	12,2	18,5	0,0	-86,5

Tab. 17. Posuny bodů vzhledem k nulté etapě

V grafech jsou vyneseny posuny bodů Rab02 a Rab03 v osách *X* a *Y* a zvlášť v ose *Z*. Zdrojová data grafů jsou uvedena v tabulce 17.

Obr. 20. Posuny bodu Rab02 v osách X, Y vzhledem k nulté etapě

Obr. 21. Posun bodu Rab02 v ose Z vzhledem k nulté etapě

Obr. 22. Posun bodu Rab03 v ose X vzhledem k nulté etapě

Obr. 23. Posun bodu Rab03 v ose Z vzhledem k nulté etapě

Posuny stanoviskových bodů vzhledem k nulté etapě jednoznačně dokazují nestabilitu území. Z tabulky rozdílů souřadnic mezi etapami jsou výrazné zejména rozdíly v souřadnicích Z, tedy ve výškách.

Na obr. 21 je graficky vyjádřen posun bodu Rab02. Je patrné, že nejprve docházelo k poklesu bodu, kromě 4. etapy. Po sanačních pracích v dolní části svahu, kdy byla přemístěna zemina do spodní části svahu, došlo evidentně k zvednutí bodu v 8. etapě. Nicméně na grafu můžeme nadále sledovat pokles bodu Rab02 od 9. etapy.

Neustálý pokles bodu Rab03 je zjevný na obr. 23. Z grafu vývoje výšky je patrný nejprve pokles výšky stanoviskového bodu, ke kterému došlo v průběhu jarních měsíců. V říjnu je již vidět opětné navracení výšek zpět. Tento jev byl zřejmě způsoben letním vysycháním půdy.

7 GPS OBSERVACE

Čerpáno z [6].

Globální družicový polohový systém (Global Navigation Satellite System, GNSS) je služba umožňující za pomoci družic autonomní prostorové určování polohy s celosvětovým pokrytím. Nejčastěji využívaným a plně funkčním polohovým systémem je NAVSTAR - GPS provozovaný armádou USA. Jako běžné označení tohoto systému se vžilo zkrácené označení GPS.

Global Positioning System (GPS) je systém umělých družic Země vysílajících neustále radiové signály, a systém pozemních přijímacích a kontrolních stanic. Slouží k určování polohy, rychlosti a času pevných i pohyblivých objektů na zemském povrchu i v zemské atmosféře. GPS byl původně určen primárně k vojenským účelům. Část služeb tohoto systému s omezenou přesností je volně k dispozici i civilním uživatelům. V současnosti je nejrozšířenějším globálním pozičním (navigačním) systémem na Zemi.

Systém je tvořen třemi segmenty: kosmickým, kontrolním a uživatelským.

a) kosmický segment

Kosmický segment se skládá z 24 družic, z nichž 3 jsou označovány jako záložní. Tyto družice obíhají Zemi na šesti téměř kruhových drahách ve výšce 20 200km. Dráhy družic svírají s rovinou zemského rovníku úhel 55°. Konfigurace družic je zvolena tak, aby byla zajištěna viditelnost 4 až 8 družic. Družice jsou vybaveny radiovým vysílačem, velmi přesnými atomovými hodinami a dalšími potřebnými přístroji, potřebných k zabezpečení fungování systému.

b) kontrolní segment

Kontrolní segment se skládá z pěti pozemních monitorovacích stanic, z nichž stanice v Colorado Springs je hlavní řídící stanicí. Hlavními úkoly segmentu jsou sledování družic na drahách, sledování palubních hodin jednotlivých družic, časová synchronizace družic a vysílání datových zpráv na družice. Hlavní kontrolní stanice shromažďuje data z monitorovacích stanic a zpracovává je za účelem určení efemerid (tj. souřadnic předpovídaných oběžných drah jednotlivých družic).

c) uživatelský segment

Tento sektor tvoří jednotlivé druhy aparatur a jejich způsoby využití.

Metoda GPS si v dnešní době získala velkou popularitu svojí relativně nízkou časovou náročností a jednoduchostí při práci v terénu a zároveň poměrně vysokou dosahovanou přesností pro použití v běžné geodézii.

7.1 VYUŽITÍ GPS PŘI MEŘENÍ SÍTĚ RABENOV

Na základě terestrických měření v 0. - 2. etapě měření bylo vysloveno podezření na nestabilitu stanoviskových bodů, proto bylo nutno lokální síť připojit do geodetického referenčního systému, resp. do velké regionální sítě. Jelikož není ze svahu přímá viditelnost na žádný bod o známých souřadnicích v S-JTSK, připojení na základě terestrického měření by bylo velmi obtížné.

GPS měření sítě Rabenov je prováděno od 3. etapy. V červenci 2007 a v dubnu 2006 (7. etapa) byla síť zaměřena pouze pomocí GPS. Během 10. etapy observace GPS neproběhla.

Ve všech etapách měření se používala rychlá statická metoda měření GPS. Metoda Real Time Kinematic (RTK) se využila při 4. etapě pro měření na podrobné body. Následující odstavce stručně popisují použité metody.

Rychlá statická metoda: Jde o obdobu statické metody, ale je zde výrazně zkrácena doba měření. Určuje se poloha bodu vzhledem k referenčnímu bodu se známými geocentrickými souřadnicemi. Doba observace trvá 10-30 minut, což se liší podle typu přístroje, vzdálenosti mezi přijímači a konfigurace družic. Tato metoda se používá zejména pro zhušťování bodových polí.

Metoda RTK : Jde o metodu měření dvoufrekvenčními přijímači GPS, které jsou vybaveny pro realizaci diferenčního fázového měření v reálném čase. Referenční stanice při měření předává, pomocí vysílačky, přijímačům buď pozorovací data nebo korekce měřených vzdáleností. Při vzdálenostech do 10 km od referenční stanice má tato metoda centimetrovou přesnost, pokud je zaručena viditelnost minimálně pěti stejných družic z referenční stanice i z pohybujícího se přijímače. Metoda je vhodná pro měření pro katastrální účely pro vytyčování a pro úlohy v geografických informačních systémech (GIS).

7.1.1 Použité přístroje

Pro měření byly použity aparatury GPS Trimble 5700 firmy Nikon – Trimble. Střední souřadnicová chyba byla určena jako 10 mm a přesnost určení výšek je 23 mm. Přístroj se skládá z antény (obr. 24), přijímače a řídící jednotky.

Obr. 24. Anténa ZephyrTM Geodetic

7.1.2 Transformace terestrického měření do měření GPS

Při transformace sítě s vyšší přesností než sítě, do které transformujeme, nastává problém s výběrem vhodné transformace.

Často používaná transformace prostorových sítí je Helmertova sedmiprvková transformace. Při této transformaci dochází k současné transformaci *X*, *Y* a *Z* souřadnice. Pro úspěšné sestavení transformačního klíče je potřebné znát 7 parametrů - 3 parametry rotace, 3 parametry posunutí a 1 pro změnu měřítka. Pro určení parametrů jsou potřeba více než dva identické body. V sítích s malým množstvím bodů nemáme téměř žádné nadbytečné parametry, pomocí kterých by bylo možné sestavit spolehlivý transformační klíč.

Během transformace nastává vzájemné ovlivnění polohových souřadnic *X*, *Y* výškovou souřadnicí *Z*. Tudíž při volbě transformace nastává otázka, zda řešit síť jako polohovou a výškovou odděleně. Výběr vhodné transformace ovlivní i změna měřítka při transformaci. Jako přirozený požadavek se ukazuje přání nezměnit během transformace přesnější sítě do méně přesné sítě měřítko původní sítě.

Samotný výpočet transformace místní sítě Rabenov do není předmětem této práce.

8 TESTOVÁNÍ HRANOLŮ

V 10. etapě jsme provedli testování hranolů uvedených v kapitole 3.2. Pro objektivní zhodnocení přesnosti hranolů byly zvoleny různé délky záměr. Měření probíhalo přibližně v profilu svahu, aby mohl být posouzen i vliv sklonu záměry na přesnost. Na každém zvoleném bodě byl horizontován stativ a postupně vyměňovány hranoly.

Jako vztažný hranol byl zvolen Leica s pomocným cílovým terčem (obr. 10). Z výsledků měření byly zjištěny rozdíly měřených vodorovných směrů, zenitových úhlů a převýšení od hodnot změřených na zvolený vztažný hranol. Dosažené rozdíly jsou uvedeny v příloze 6.

Na základě rozdílů mezi jednotlivými hranoly a vztažným hranolem byly pro lepší názornost vytvořeny grafy. Grafy jsou sestrojeny zvlášť pro vodorovné směry, zenitové úhly a převýšení.

Symbolika uvedená v grafech a tabulkách rozdílů (příloha 6) je následující:

Leica "s" ... hranol s pomocným cílovým terčem (Leica GPR1),

Leica "bez" ... hranol bez pomocného cílového terče (Leica GPR1),

"červený" ... hranol řady Basic (Leica GPR121),

"360" ... všesměrný hranol (Leica GRZ4).

Po vyhodnocení grafů jednotlivých rozdílů nelze říci, že by mezi jednotlivými testovanými hranoly byly jednoznačně definovatelné zákonitosti. Nicméně je zřejmé, že měření vykazují různé odlišnosti. Největších rozdílů od vztažného hranolu dosahovaly hodnoty na červený hranol Leica GRZ4, což odpovídá jeho nejnižší pořizovací ceně v porovnání s ostatními.

Využití všesměrného hranolu pro měření v místní síti Rabenov se jeví jako postačující. Lze ho použít při všech měřických činnostech inženýrské geodézie, které nepodléhají vysoké přesnosti. Více informací a hodnocení všesměrného hranolu uvádí [1].

57

Obr. 25. Graf testovaných hranolů - závislost rozdílů vodorovných směrů

Obr. 26. Graf testovaných hranolů - závislost rozdílů zenitových úhlů

Obr. 27. Graf testovaných hranolů - závislost rozdílů převýšení

9 ZÁVĚR

Vliv povrchové i podpovrchové těžby na oblast severních Čech je znatelný. Těžba výrazně ovlivnila strukturu a ráz krajiny. S útlumem těžby nastala otázka rekultivace území směřující k tvorbě nové kulturní krajiny. Cílená rekultivace se snaží o co nejlepší navrácení krajiny do stavu, kde je možné další využití.

Tato diplomová práce se zabývá lokalitou bývalého povrchového lomu Chabařovice. Předčasným ukončením lomu došlo k předčasnému zastavení těžební činnosti v nejhorších báňsko - technologických a hydrogeologických podmínkách.

Terestrická měření probíhají na svahu Rabenov již od roku 2003. Pro geodetické je užívána lokální geodetická síť tvořena původně body Rab01, Rab02, Rab03 a Rab04. Oblast bodu Rab04 byla prohlášena za stabilní, tudíž se tento bod od 8. etapy nevyužívá. V roce 2006 byl vybudován bod Rab05, na kterém proběhlo měření pouze v 9. etapě, jelikož byl při rekultivačních pracích poničen.

Předešlá etapová měření dokázala, že dochází k posunům i na stanoviskových bodech. Výsledky této práce prokazují neustálý pohyb bodů, a to ve všech směrech.

Jelikož terestrických měřením je možné zjistit pouze posuny mezi jednotlivými body, není možné určit posun místní sítě jako celku, začalo se od třetí etapy měřit metodou GPS. GPS observace umožní transformaci místní sítě do sítě S-JTSK.

V poslední době byla přesunuta část zeminy do spodní části dané lokality. To zapříčinilo odlehčení horní části svahu a jeho mírné zvednutí. Jak bylo zjištěno na základě měření v 9. a 10. etapě, dochází k pohybům i po vybudování opěrných zdí, které ovšem leží mimo stanoviskové body. Protože bylo prokázáno, že stále dochází k posunům svahu, doporučovala bych svah nadále sledovat a tím monitorovat funkčnost sanačních opatření.

Při měření byly použity cílené i všesměrné hranoly při jejich vzájemném testování jsem došla k závěru, že cílené hranoly vykazují lepší přesnost. Nicméně všesměrné hranoly jsou svou přesností pro měření plně vyhovující. Jejich použití je výhodné z časových a ekonomických důvodů.

Část práce byla prezentována na X. ročníku Studentské vědecké odborné činnosti Zemědělské fakulty v Českých Budějovicích.

SEZNAM POUŽITÉ LITERATURY

- TŘEŠŇÁK, T. Vyhodnocení etapových měření 2006 v místní prostorové síti Rabenov. [s.l.], 2006. 108 s. ČVUT. Diplomová práce.
- [2] GRESL, J. Vyhodnocení etapových měření v síti Rabenov za rok 2007 [s.l.],
 2007. 58 s. ČVUT. Diplomová práce.
- [3] Palivový kombinát Ústí, s. p. [online]. Dostupný z WWW: http://www.pku.cz/site.php?location=1.
- [4] Ústecký kraj oficiální internetové stránky [online]. Dostupný z WWW: http://www.kr-ustecky.cz/.
- [5] Opti-cal Survey Equipment Ltd Survey and Laser [online]. Dostupný z WWW: http://www.surveyequipment.com.
- [6] HÁNEK, P., HÁNEK JR., P., MARŠÍKOVÁ, M. Geodézie pro obor pozemkové úpravy a převody nemovitostí. České Budějovice, JČU, 2007. 88 s. ISBN 978-80-7040-971-8.
- [7] BLAŽEK, R., JANDOUREK, J. *Geodézie* (Úpravy měřených veličin a výškopis). Praha, ČVUT, 1994. 164 s. ISBN 80-01-00611-5.
- [8] BLAŽEK, R., SKOŘEPA, Z. *Geodézie 30 : Výškopis*. Praha : ČVUT, 1997. 93
 s. ISBN 80-01-01598-X.
- [9] BAJER, M., PROCHÁZKA, J. Inženýrská geodézie 10, 20: Návody ke cvičením. Praha: ČVUT, 1997. 192 s. ISBN 80-01-01673-0.
- [10] HAMPACHER, M., RADOUCH, V. Teorie chyb a vyrovnávací počet 10. Praha : ČVUT, 2000. 159 s. ISBN 80-01-01704-4.
- [11] TYRNER, M., ŠTĚPÁNKOVÁ, H. Vyrovnávací počet. Ostrava: Vysoká škola báňská, 1993. 133 s. ISBN 80-7078-182-3.
- [12] KABELÁČ, J. Geodetické metody vyrovnání: Metoda nejmenších čtverců.
 Plzeň: Západočeská univerzita, 2003. 98 s. ISBN 80-7043-260-8.

SEZNAM OBRÁZKŮ

Obr. 1.	Mapový výřez se zákresem lokality	9
Obr. 2.	Letecký snímek s vyznačenou zájmovou oblastí	12
Obr. 3.	Zátrh v terénu	13
Obr. 4.	Sesuv půdy	13
Obr. 5.	Sanace svahů jezera	15
Obr. 6.	Jezero Chabařovice	15
Obr. 7.	Stabilizace bodu se zasunutým centračním přípravkem	18
Obr. 8.	Stabilizace podrobného bodu	18
Obr. 9.	Leica TC 1800	19
Obr. 10.	Leica GPR1	20
Obr. 11.	Leica GRZ4	20
Obr. 12.	Leica GPR121	20
Obr. 13.	Centrační prvek pro dostředění na vrtu	20
Obr. 14.	Přibližné schéma místní sítě	21
Obr. 15.	Redukce délek a zenitových úhlů	23
Obr. 16.	Náčrt místní sítě Rabenov	36
Obr. 17.	Vstup bodů do softwaru Rocinante	45
Obr. 18.	Vstup měření do softwaru Rocinante	46
Obr. 19.	Stabilizace bodu Rab05	49
Obr. 20.	Posuny bodu Rab02 v osách X,Y vzhledem k nulté etapě	51
Obr. 21.	Posun bodu Rab02 v ose Z vzhledem k nulté etapě	52
Obr. 22.	Posun bodu Rab03 v ose X vzhledem k nulté etapě	52
Obr. 23.	Posun bodu Rab03 v ose Z vzhledem k nulté etapě	53
Obr. 24.	Anténa ZephyrTM Geodetic	56
Obr. 25.	Graf testovaných hranolů - závislost rozdílů vodorovných směrů	58
Obr. 26.	Graf testovaných hranolů - závislost rozdílů zenitových úhlů	59
Obr. 27.	Graf testovaných hranolů - závislost rozdílů převýšení	60

SEZNAM TABULEK

Tab. 1.	Úhlová přesnost totálních stanic	28
Tab. 2.	Směrodatné odchylky vzdáleností, 9. etapa	31
Tab. 3.	Směrodatné odchylky měřených vodorovných směrů,	
	David Macho, stanovisko Rab01	31
Tab. 4.	Směrodatné odchylky měřených vodorovných směrů,	
	David Macho, stanovisko Rab02	32
Tab. 5.	Směrodatné odchylky měřených vodorovných směrů,	
	Eliška Dvořáková, stanovisko Rab01	32
Tab. 6.	Směrodatné odchylky měřených vodorovných směrů,	
	Eliška Dvořáková, stanovisko Rab02	32
Tab. 7.	Směrodatné odchylky měřených vodorovných směrů,	
	Jiří Gresl, stanovisko Rab01	32
Tab. 8.	Směrodatné odchylky měřených vodorovných směrů,	
	Jiří Gresl, stanovisko Rab02	33
Tab. 9.	Výsledné směrodatné odchylky	33
Tab. 10.	Směrodatné odchylky vzdáleností, 10. etapa	35
Tab. 11.	Vyrovnané souřadnice a jejich směrodatné odchylky 9.etapa	47
Tab. 12.	Vyrovnané souřadnice a jejich směrodatné odchylky 10. etapa	47
Tab. 13.	Porovnání 8. a 9. etapy	48
Tab. 14.	Porovnání 0. a 9. etapy	49
Tab. 15.	Porovnání 9. a 10. etapy	50
Tab. 16.	Porovnání 0. a 10. etapy	50
Tab. 17.	Posuny bodů vzhledem k nulté etapě	51
Tab. 18	Tab. 33. Redukce délek a zenitových úhlů, 9. etapa	Příloha 3
Tab. 34	Tab. 36. Redukce délek a zenitových úhlů, 10. etapa	Příloha 4
Tab. 37	Tab. 48. Rozdíly testovaných hranolů	Příloha 6

SEZNAM PŘÍLOH

- Příloha 1 Ukázka zápisníků užitých v 9. etapě (měření na sítě na orientované a všesměrné odrazné hranoly).
- Příloha 2 Ukázka zápisníků užitých v 10. etapě (měření sítě na orientované odrazné hranoly, měření při zkoušce hranolů na podrobné body).
- **Příloha 3** Výsledky redukce délek a zenitových úhlů pro 9. etapu.
- **Příloha 4** Výsledky redukce délek a zenitových úhlů pro 10. etapu.
- Příloha 5 Ukázka výstupního souboru při vyrovnání v programu GNU GaMa/Rosinante.
- **Příloha 6** Tabulky rozdílů testovaných hranolů.

PŘÍLOHA 1

Ukázka zápisníků užitých v 9. etapě (měření na sítě na orientované a všesměrné odrazné hranoly).

Hoo lat m č. Pásmo m č. Latě m č.	C Zapsal: Vypočeti: Kontroloval:	cilene hronoly	Šikmá délka Převýšení	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	i) (17) (18) (19) (20) (21) (22) (23)		8	1 413, 064 1 +1, 8HH	99 72 45 a LAS, 664 11 41,846	1 4/04, B35 1 - 58, 236	II 404, 835 II - 58, 344	109 20 65 8 404, 895 8 - 58, 338	1 367, 345 -52, 424	109 05 /19 @ 367, 945 @ -52 /27				0	 2 2	2	0	;	
9 Rabos & Rabo2 Teodolit Leica TC1	V.č. 413 790	Rab 01	y Zenitové vzdálenosti z	Prometric (6) + (8) Vyška Z 1. skupina Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(8) (10) (11) (12) (13) (14) (15) (16)		0 00 00 ×	4,221 1 98 72 47 99 72 45 1	16 61 29 E HAD OD OH 4 AD 06 AS E	0.585 1 403 20 61 403 20 65 1	01. 03 55 050 250 72 250 72 250 10 10 10 10 10 10 10 10 10 10 10 10 10		1, 200 10 10 10 10 10 10 10 10 10 10 10 10 1	445 30 94 2 335 93 73 400 00 00 2				Σ			Σ		
Situace:	Rob Con	o počatek <	Vodorovné směry	R Průměr Průměr 2. skupina 0 g c cc redukovaný g c c	(4) (5) (6) (7)	0 01 54 01 55	11 200 01 56 00 00	1 16 (2 83 62 84	11 246 62 84 61 29	1 84 35 49 35 05	II OCI 91 01 23 50	00 CC + C + 07	145 32 74 32 49	II 345 32 23 30 94	0 01 58 01 60	II 200 01 62 00 05			-		2		
olygoonový pořad č. Při protínáni: tanovisko: در مرا سن کر	ARTI: DVORAKOVA E.	dne H.H. 20 0; Jočast: Jasno , slunečn	Stanovisko Směr na bod	šíslo výška číslo stroje	(1) (2) (3)	tab 1,173 počotek	5	e	50000		RabOS		Rehm	200001	Jolian	Found							S BKPDM 1.1 - 2007

,

PŘÍLOHA 2

Ukázka zápisníků užitých v 10. etapě (měření sítě na orientované odrazné hranoly, měření při zkoušce hranolů na podrobné body).

Zápisı	iík vodorovných směrů, zenitových vzdále	eností, šikmých délek a převýšer	lí str.:
Polygoonový pořad č.	Situace:	Teodolit:	Inv. lať <i>m</i> č.
Meril: Markant:	8	Tr Jan	Pásmo <i>m</i> č. Latě <i>m</i> č.
cili centricky	~~~	Leica I C1000	Zapsal: Vypočeti:
Mětili stanovisko: ccnhricke		111000	Kontroloval:
dne 16.8. 20 0		10.514.00	Poznamka:
počasí:			
Stanovisko Směr na bod	Vodorovné směry	Zenitové vzdálenosti z	Šikmá délka Převýšení
žislo výška číslo	E 1. skupina Průměr 2. skupina prostý (6) + (8) Výška E cllové B	1. skupina z g 2. skupina z (<u>1</u>	3) + (16) 8 1. sk. 2. sk. 8 1. sk. 2. sk.
(1) (2) (3)	0 c c c c redukovaný g c c značky c. (4) (5) (6) (7) (8) (9) (10) (11)	g c cc <u>a g c cc</u> (12) (13) (14) (15) (16)	z b (17) (18) (19) (20) (21) (22) (23)
01 1344 20 00		05 67 54 402 67 68 1	1 265, 326 925 1 -22, 234 243
57.91 mell 10		184 32 18	
360	11 228 05 02 05 86 2 2 2 2 2 2	535 35 72 Z	0 265,926 0 -22,237
	1 46 32 22 23 39	08 43 75 108 43 84 1 408 45 85	064 -32,481 -32,481 490
P522		104 56 07 X= 9 II	
Ne-457 3600	III 246 39 42 33 30 2 3	29 33 82 2 100	645 84 0 309,74 0 -33,486
	1 Lr 20 25 26 36	08 42 74 408 43 89 I	710 T10 1915
06 7 7		04 55 23 A= 18 II	=
10 bez	11 246 33 45 39 28 28 28 28 28 28 28 28 23 28 28 23 28 28 28 28 28 28 28 28 28 28 28 28 28	33 33 64 Z	Ø 309,740 Ø -39,488
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	08 42 76 108 43 82 1	715 715 1 182 H
PR.7.7 11		81 56 13 X=6 11	
1044 0	5 II 246 39 45 39 30 2 3	99 39 83 83	0 309,710 0 -39,484
	95 55 57 44 47 17 17 17 17 17 17 17 17 17 17 17 17 17	08 42 72 408 43 85 1	711 711 4182 483
PR 29		21 56 03 i = 6 11	
CCW.	III 246 35 40 39 28 28 46 39 28 28	50 38 38 38 2	a 309,741 a -39,486
	1 1/ 00 1/2 48	38 42 76 408 43 85 1	711 711 482 431
Dong		94 56 06 X= 9 II	=
10463600	11 246 33 54 39 40 Z	22 82 82 82	Ø 309,711 Ø -39,486
	1 Ca LA 312 4A 85	08 17 44 408 17 49 1 108 17 59	1 454,048 047 1 -56,686 533
P821		81 82 46 X= 5 11	=
No.= 1,43 3600	11 252 44 82 44 74 74 12 59 44 77 23	29 33 30 T	17 Sy a 454,048 a -56,630
	1 Ca 14 71 41 81	08 /7 55 108 17 55 1 28 28 28	469 469 1 840 ENO 1
DenA		31 82 44 X= 1 11	
10 2 1 per	II 259 44 34 44 73 59 41 73 28	≎© 35,900 Σ 100	345 38 a 4524,048 a -364,634
	1 56 Let 35 Let 82	08 17 40 108 17 46 1	1 047 047 1 683 632
P621 V		31 32 43 X= 6 II	
×. <	11 253 44 88 44 74 Z4 23	50 22 83 2 Z	a 4541047 a -561688
VS BKPDM 1.1 - 2007			Vytiskl DVS Multimedia, Dvory nad Lužnicí

PRILOHA 3	Tabulky výsledků redukce délek a zenitových úhlů pro 9. etapu.

Tab. 18. Redukce délek a zenitových úhlů, stanovisko Rab01 (vT = 1,173 m), všesměrné hranoly, David Macho $H_i = 253,304 m$ $H_T = 254,477 m$

mezi	D_{ij}	V _C	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T/H_C	H_m	$arphi_{ij}$	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
01-03	419,066	1,221	0,048	99,7238	255,069	256,290	255,384	0,004183	0,000273	0,007292	99,7314
01-05	404,896	0,585	-0,588	109,2083	195,019	195,604	225,041	0,004041	0,000264	-0,091506	109,1171
01-02	367,917	1,304	0,131	109,0536	201,062	202,366	228,422	0,003672	0,000240	0,022438	109,0763

mezi	$^{1}D_{ij}^{\tilde{\prime}}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$
body	[m]	[m]	[m]	[m]	[m]	[m]
01-03	419,066	0,004906	419,0657	254,187	419,062	419,045
01-05	404,812	0,004739	404,8116	224,162	400,669	400,655
01-02	367,936	0,004308	367,9355	227,183	364,204	364,191

*Tab. 19. Redukce délek a zenitových úhlů, stanovisko Rab01 (*vT = 1,173 m*), cílené hranoly, David Macho*

mezi	$^{*}D_{ij}^{'}$	V _C	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_{m}	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
01-03	419,065	1,221	0,048	99,7232	255,069	255,069	254,773	0,004183	0,000273	0,007292	99,7308
01-05	404,896	0,585	-0,588	109,2076	195,019	195,604	225,041	0,004041	0,000264	-0,091506	109,1164
01-02	367,917	1,304	0,131	109,0538	201,062	202,366	228,422	0,003672	0,000240	0,022438	109,0765

mezi	$^{1}D_{ij}^{''}$	Δ	$^{1}D_{ij}^{'}$	$H_{m}^{'}$	${}^{1}D_{ij}^{m}$	${}^{1}D_{ij}^{0}$
body	[m]	[m]	[m]	[m]	[m]	[m]
01-03	419,065	0,004906	419,0647	254,187	419,061	419,044
01-05	404,812	0,004739	404,8116	224,162	400,670	400,656
01-02	367,936	0,004308	367,9355	227,183	364,204	364,191

mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
02-01	367,915	1,173	-0,131	90,9532	253,304	254,477	228,422	0,003672	0,000240	-0,022438	90,9310
02-03	666,452	1,221	-0,083	94,8453	255,069	256,290	229,328	0,006652	0,000434	-0,007902	94,8378
02-05	353,988	0,585	-0,719	101,1181	195,019	195,604	198,985	0,003533	0,000231	-0,129291	100,9890

Tab. 20. Redukce délek a zenitových úhlů, stanovisko Rab02 (vT = 1,304 m), všesměrné hranoly, David Macho $H_i = 201,062 \text{ m}$ $H_T = 202,366 \text{ m}$

mezi	${}^{1}D_{ij}^{\tilde{\mu}}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D_{ij}^{0}$
body	[m]	[m]	[m]	[m]	[m]	[m]
02-01	367,9336	0,004789	367,9335	227,183	364,205	364,192
02-03	666,4587	0,008674	666,4586	228,066	664,266	664,242
02-05	353,9761	0,004607	353,9761	198,041	353,934	353,923

Tab. 21. Redukce délek a zenitových úhlů, stanovisko Rab02 (vT = 1,304 m), cílené hranoly, David Macho

mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
02-01	367,914	1,173	-0,131	90,9516	253,304	254,477	228,422	0,003672	0,000240	-0,022438	90,9294
02-03	666,449	1,221	-0,083	94,8429	255,069	256,290	229,328	0,006652	0,000434	-0,007902	94,8354
02-05	353,988	0,585	-0,719	101,1201	195,019	195,604	198,985	0,003533	0,000231	-0,129291	100,9910

mezi	$^{1}D_{ij}^{''}$	Δ	$^{1}D_{ij}^{(-)}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$
body	[m]	[m]	[m]	[m]	[m]	[m]
02-01	367,9326	0,004789	367,9325	227,183	364,203	364,190
02-03	666,4557	0,008674	666,4556	228,066	664,261	664,237
02-05	353,9761	0,004607	353,9760	198,041	353,933	353,922

Tab. 22. Redukce délek a zenitových úhlů, stanovisko Rab01 (vT = 1,173 m), všesměrné hranoly, Eliška Dvořáková $H_i = 253,304 m$ $H_T = 254,477 m$

mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_{m}	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
01-03	419,066	1,221	0,048	99,7253	255,069	256,290	255,384	0,004183	0,000273	0,007292	99,7329
01-05	404,896	0,585	-0,588	109,2082	195,019	195,604	225,041	0,004041	0,000264	-0,091506	109,1170

mezi	${}^{1}D_{ij}^{\tilde{\mu}}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D_{ij}^{0}$
body	[m]	[m]	[m]	[m]	[m]	[m]
01-03	419,0658	0,004906	419,0657	254,187	419,062	419,045
01-05	404,8117	0,004739	404,8116	224,162	400,669	400,655

Tab. 23. Redukce délek a zenitových úhlů, stanovisko Rab01 (vT = 1,173 m), cílené hranoly, Eliška Dvořáková

mezi body	$^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
01-03	419,064	1,221	0,048	99,7215	255,069	256,290	255,384	0,004183	0,000273	0,007292	99,7291
01-05	404,895	0,585	-0,588	109,2065	195,019	195,604	225,041	0,004041	0,000264	-0,091507	109,1153
01-02	367,915	1,304	0,131	109,0519	201,062	202,366	228,422	0,003672	0,000240	0,022438	109,0746

mezi	${}^{1}D_{ij}^{\tilde{\prime}}$	Δ	$^{1}D_{ij}^{(-)}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$					
body	[m]	[m]	[m]	[m]	[m]	[m]					
01-03	419,0638	0,004906	419,0637	254,187	419,060	419,043					
01-05	404,8107	0,004739	404,8106	224,162	400,670	400,656					
01-02	367,9336	0,004308	367,9335	227,183	364,203	364,190					
mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
-------	--------------------	----------------	-----------------	--------------	-----------	-------------	---------	--------------------	---------------	-----------------	----------------
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
02-01	367,916	1,173	-0,131	90,9532	253,304	254,477	228,422	0,003672	0,000240	-0,022438	90,9310
02-03	666,454	1,221	-0,083	94,8468	255,069	256,290	229,328	0,006652	0,000434	-0,007902	94,8393
02-05	353,989	0,585	-0,719	101,1182	195,019	195,604	198,985	0,003533	0,000231	-0,129291	100,9891

Tab. 24. Redukce délek a zenitových úhlů, stanovisko Rab02 (vT = 1,304 m), všesměrné hranoly, Eliška Dvořáková $H_i = 201,062m$ $H_T = 202,366m$

mezi	${}^{1}D_{ij}^{\H}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$
body	[m]	[m]	[m]	[m]	[m]	[m]
02-01	367,9346	0,004789	367,9345	227,183	364,206	364,193
02-03	666,4607	0,008674	666,4606	228,066	664,269	664,245
02-05	353,9771	0,004607	353,9771	198,041	353,934	353,924

Tab. 25. Redukce délek a zenitových úhlů, stanovisko Rab02 (vT = 1,304 m), cílené hranoly, Eliška Dvořáková

mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
02-01	367,917	1,173	-0,131	90,9524	253,304	254,477	228,422	0,003672	0,000240	-0,022438	90,9302
02-03	666,453	1,221	-0,083	94,8454	255,069	256,290	229,328	0,006652	0,000434	-0,007902	94,8379
02-05	353,990	0,585	-0,719	101,1204	195,019	195,604	198,985	0,003533	0,000231	-0,129290	100,9913

mezi	$^{1}D_{ij}^{''}$	Δ	$^{1}D_{ij}^{(-)}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$
body	[m]	[m]	[m]	[m]	[m]	[m]
02-01	367,9356	0,004789	367,9355	227,183	364,206	364,193
02-03	666,4597	0,008674	666,4596	228,066	664,267	664,243
02-05	353,9781	0,004607	353,9780	198,041	353,935	353,924

mezi	${}^{*}D_{ij}^{'}$	V _C	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_{m}	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
01-03	419,068	1,221	0,048	99,7233	255,069	256,290	255,384	0,004183	0,000273	0,007292	99,7309
01-05	404,898	0,585	-0,588	109,2077	195,019	195,604	225,041	0,004041	0,000264	-0,091506	109,1165
01-02	367,918	1,304	0,131	109,0538	201,062	202,366	228,422	0,003672	0,000240	0,022438	109,0765

Tab. 26. Redukce délek a zenitových úhlů, stanovisko Rab01 (vT = 1,173 m), všesměrné hranoly, Jiří Gresl $H_i = 253,304$ m $H_T = 254,477$ m

mezi	${}^{1}D_{ij}^{\tilde{\mu}}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D_{ij}^{0}$
body	[m]	[m]	[m]	[m]	[m]	[m]
01-03	419,0678	0,004906	419,0677	254,187	419,064	419,047
01-05	404,8137	0,004739	404,8136	224,162	400,672	400,658
01-02	367,9366	0,004308	367,9365	227,183	364,205	364,192

Tab. 27. Redukce délek a zenitových úhlů, stanovisko Rab01 (vT = 1,173 m), cílené hranoly, Jiří Gresl

mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_{m}	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
01-03	419,064	1,221	0,048	99,7230	255,069	256,290	255,384	0,004183	0,000273	0,007292	99,7306
01-05	404,895	0,585	-0,588	109,2067	195,019	195,604	225,041	0,004041	0,000264	-0,091506	109,1155
01-02	367,915	1,304	0,131	109,0518	201,062	202,366	228,422	0,003672	0,000240	0,022438	109,0745

mezi	${}^{1}D_{ij}^{\tilde{\prime}}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D_{ij}^{m}$	${}^{1}D_{ij}^{0}$
body	[m]	[m]	[m]	[m]	[m]	[m]
01-03	419,0638	0,004906	419,0637	254,187	419,060	419,043
01-05	404,8107	0,004739	404,8106	224,162	400,670	400,656
01-02	367,9336	0,004308	367,9335	227,183	364,203	364,191

mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
02-01	367,914	1,173	-0,131	90,9538	253,304	254,477	228,422	0,003672	0,000240	-0,022438	90,9316
02-03	666,450	1,221	-0,083	94,8412	255,069	256,290	229,328	0,006652	0,000434	-0,007902	94,8337
02-05	353,987	0,585	-0,719	101,1176	195,019	195,604	198,985	0,003533	0,000231	-0,129292	100,9885

Tab. 28. Redukce délek a zenitových úhlů, stanovisko Rab02 (vT = 1,304 m), všesměrné hranoly, Jiří Gresl $H_i = 201,062 \text{ m}$ $H_T = 202,366 \text{ m}$

mezi	${}^{1}D_{ij}^{\H}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$
body	[m]	[m]	[m]	[m]	[m]	[m]
02-01	367,9326	0,004789	367,9325	227,183	364,204	364,191
02-03	666,4567	0,008674	666,4566	228,066	664,260	664,237
02-05	353,9751	0,004607	353,9751	198,041	353,933	353,922

Tab. 29. Redukce délek a zenitových úhlů, stanovisko Rab02 (vT = 1,304 m), cílené hranoly, Jiří Gresl

mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
02-01	367,914	1,173	-0,131	90,9512	253,304	254,477	228,422	0,003672	0,000240	-0,022438	90,9290
02-03	666,449	1,221	-0,083	94,8436	255,069	256,290	229,328	0,006652	0,000434	-0,007902	94,8361
02-05	353,988	0,585	-0,719	101,1194	195,019	195,604	198,985	0,003533	0,000231	-0,129291	100,9903

mezi	$^{1}D_{ij}^{''}$	Δ	$^{1}D_{ij}^{(-)}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$
body	[m]	[m]	[m]	[m]	[m]	[m]
02-01	367,9326	0,004789	367,9325	227,183	364,202	364,189
02-03	666,4557	0,008674	666,4556	228,066	664,262	664,238
02-05	353,9761	0,004607	353,9761	198,041	353,933	353,922

Tab. 30. Redukce délek a zenitových úhlů, stanovisko Rab01 (vT = 1,173 m), orientované hranoly, Doc. Hánek $H_i = 253,304 \text{ m}$ $H_T = 254,477 \text{ m}$

mezi	${}^{*}D_{ij}$	V _C	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
01-03	419,067	1,221	0,048	99,7239	255,069	256,290	255,384	0,004183	0,000273	0,007292	99,7315
01-05	404,896	0,585	-0,588	109,2076	195,019	195,604	225,041	0,004041	0,000264	-0,091506	109,1164
01-02	367,917	1,304	0,131	109,0544	201,062	202,366	228,422	0,003672	0,000240	0,022438	109,0771

mezi	${}^{1}D_{ij}^{\tilde{\mu}}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D_{ij}^{0}$
body	[m]	[m]	[m]	[m]	[m]	[m]
01-03	419,0668	0,004906	419,0667	254,187	419,063	419,046
01-05	404,8117	0,004739	404,8116	224,162	400,670	400,656
01-02	367,9356	0,004308	367,9355	227,183	364,203	364,190

Tab. 31. Redukce délek a zenitových úhlů, stanovisko Rab02 (vT = 1,304 m), orientované hranoly, Pavel Hánek

 $H_i = 201,062 \text{m}$ $H_T = 202,366 \text{m}$

mezi	${}^{*}D_{ij}^{'}$	V _C	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
02-01	367,916	1,173	-0,131	90,9530	253,304	254,477	228,422	0,003672	0,000240	-0,022438	90,9308
02-03	666,452	1,221	-0,083	94,8430	255,069	256,290	229,328	0,006652	0,000434	-0,007902	94,8355
02-05	353,988	0,585	-0,719	101,1195	195,019	195,604	198,985	0,003533	0,000231	-0,129291	100,9904

mezi	${}^{1}D_{ij}^{\H}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$
body	[m]	[m]	[m]	[m]	[m]	[m]
01-03	419,0668	0,004906	419,0667	254,187	419,063	419,046
01-05	404,8117	0,004739	404,8116	224,162	400,670	400,656
01-02	367,9356	0,004308	367,9355	227,183	364,203	364,190

Tab. 32. Redukce délek a zenitových úhlů, stanovisko Rab03 (vT = 1,221 m), orientované hranoly, Ing. Janžurová $H_i = 255,069 \text{ m}$ $H_T = 256,290 \text{ m}$

mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
03-02	666,452	1,304	0,083	105,1632	201,062	202,366	229,328	0,006652	0,000434	0,007902	105,1715
03-01	419,066	1,173	-0,048	100,2812	253,304	254,477	255,384	0,004183	0,000273	-0,007292	100,2742

mezi	${}^{1}D_{ij}^{\tilde{\prime}}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D_{ij}^{0}$
body	[m]	[m]	[m]	[m]	[m]	[m]
03-02	666,4587	0,008122	666,4586	228,066	664,264	664,240
03-01	419,0658	0,005107	419,0657	254,187	419,062	419,045

Tab. 33. Redukce délek a zenitových úhlů, stanovisko Rab05 (vT = 0,585 m), orientované hranoly, Ing. Janžurová $H_i = 195,019 \text{ m}$ $H_T = 195,604 \text{ m}$

mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
05-02	353,987	1,304	0,719	98,8866	201,062	202,366	198,985	0,003533	0,000231	0,12929	99,0161
05-01	404,894	1,173	0,588	90,7982	253,304	254,477	225,041	0,004041	0,000264	0,09151	90,8900

mezi body	${}^{1}D_{ij}^{\tilde{\prime}}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$
	[m]	[m]	[m]	[m]	[m]	[m]
05-02	353,9751	0,002067	353,9751	198,041	353,933	353,922
05-01	404,8097	0,002364	404,8097	224,162	400,670	400,656

PŘÍLOHA 4 Tabulky výsledků redukce délek a zenitových úhlů pro 10. etapu.

Tab. 34. Redukce délek a zenitových úhlů, stanovisko Rab01 (vT = 1,363 m), orientované hranoly, David Macho

 $H_i = 253,304 \text{ m}$ $H_T = 254,667 \text{ m}$

mezi	$^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
01-03	419,066	1,257	-0,106	99,7521	255,069	256,326	255,497	0,004183	0,000273	-0,016103	99,7363
01-02	367,929	1,440	0,077	109,0648	201,062	202,502	228,585	0,003672	0,000240	0,013188	109,0782

mezi body	${}^{1}D_{ij}^{\tilde{\mu}}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$
	[m]	[m]	[m]	[m]	[m]	[m]
01-03	419,0664	0,005701	419,0663	254,187	419,063	419,046
01-02	367,9399	0,005006	367,9399	227,183	364,207	364,194

Tab. 35. Redukce délek a zenitových úhlů, stanovisko Rab02 (vT = 1,440 m), všesměrné hranoly, Jiří Gresl

 $H_i = 201,062 \text{m}$ $H_T = 202,502 \text{m}$

mezi	${}^{*}D_{ij}^{'}$	v _c	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$ ho_{_{ij}}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
02-01	367,929	1,363	-0,077	90,9423	201,062	202,425	202,464	0,003672	0,000240	-0,013188	90,9294
02-03	666,445	1,257	-0,183	94,8556	253,304	254,561	228,532	0,006652	0,000434	-0,017423	94,8386

mezi body	$^{1}D_{ij}^{\tilde{\prime}}$	Δ	$^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D^{m}_{ij}$	${}^{1}D^{0}_{ij}$
	[m]	[m]	[m]	[m]	[m]	[m]
02-01	367,9399	0,005288	367,9398	201,062	364,210	364,198
02-03	666,4598	0,009579	666,4597	227,183	664,268	664,244

mezi	$^{*}D_{ij}^{'}$	V _C	Δv_{TC}	$^{*}Z_{TC}$	H_i/H_j	H_T / H_C	H_m	\pmb{arphi}_{ij}	$oldsymbol{ ho}_{ij}$	δZ_{TC}	${}^{1}Z_{ij}$
body	[m]	[m]	[m]	[gon]	[m]	[m]	[m]	[gon]	[gon]	[gon]	[gon]
03-02	666,446	1,44	0,183	105,1520	201,062	202,502	229,414	0,006652	0,000434	0,017424	105,1699
03-01	419,066	1,363	0,106	100,2534	253,304	254,667	255,497	0,004183	0,000273	0,016103	100,2698

Tab. 36. Redukce délek a zenitových úhlů, stanovisko Rab03 (vT = 1,257 m), orientované hranoly, Martin Pavel $H_i = 255,069 m$ $H_T = 256,326 m$

mezi body	$^{1}D_{ij}^{\tilde{\mu}}$	Δ	${}^{1}D_{ij}$	$H_{m}^{'}$	${}^{1}D_{ij}^{m}$	${}^{1}D_{ij}^{0}$
	[m]	[m]	[m]	[m]	[m]	[m]
03-02	666,4608	0,008362	666,4607	228,066	664,267	664,243
03-01	419,0664	0,005258	419,0663	254,187	419,063	419,046

PŘÍLOHA 5

Ukázka výstupního souboru při vyrovnání v programu GNU GaMa/Rosinante.

```
Redukovana pozorovani
```

```
stanovisko cil
                             merena
                                           redukovana
                                                              rozd. dh
====== [m/g] ===== [mm] =
           Rab02 sikma 367.93560 367.95416
Rab03 sikma 419.06680 419.06652
                                                               0.1310
Rab01
                                                               0.0480
             Rab05 sikma 404.81170
                                              404.72817
                                                             -0.5880
             Rab02 zenit 109.07710 109.099535
                                                               0.1310
                              99.73150
                                                               0.0480
             Rab03 zenit
                                              99.738792
             Rab05 zenit 109.11640 109.024857
                                                             -0.5880
             Rab01 sikma 367.93460
                                              367.95315
Rab02
                                           367.95510
666.46530
353.96561
90.908364
94.827598
                                                               -0.1310
             Rab03 sikma666.45870Rab05 sikma353.97610
                                                               -0.0830
                                                               -0.7190
             Rab01 zenit 90.93080
Rab03 zenit 94.83550
                                                               -0.1310
            Rab03 zenit94.8355094.827598-0.0830Rab05 zenit100.99040100.861101-0.7190Rab01 sikma419.06580419.06552-0.0480Rab02 sikma666.45870666.465300.0830Rab01 zenit100.27420100.266908-0.0480Rab02 zenit105.17150105.1794020.0830Rab01 sikma404.80970404.726190.5880Rab02 sikma353.97510353.964650.7190Rab01 zenit90.8900090.9815450.5880Rab02 zenit99.0161099.1454000.7190
                                                               -0.0830
Rab03
Rab05
Popis site
* * * * * * * * * *
Description of this site.
Zakladni parametry vyrovnani
SouradnicexyzxyzVyrovnane :300Operne * :100Pevne :100
                   1
_____
Celkem : 4
                          0 0
Zenitove uhly : 10
Sikme delky : 10
Sikme delky
Celkem pozorovani : 30
Pocet rovnic oprav
                         : 30
                                                          Pocet neznamych: 13
Pocet nadbyt. pozorovani: 18
                                                          Defekt site : 1
m0 apriorni : 10.00
m0' aposteriorni: 52.68
                                              [pvv] : 4.99454e+004
```

Pri statisticke analyze se pracuje
- s apriorni jednotkovou stredni chybou 10.00
- s konfidencni pravdepodobnosti 95 %

Maximalni normovana oprava 9.91 presahuje kritickou hodnotu 1.96

na hladine vyznamnosti 5 % pro pozorovani #7
<z-angle from="Rab01" to="Rab02" val="109.0995" stdev="4.8" />
Pevne body

bod x y z

Doa	21	1	4	
===========	=======================================	=======================================	=======================================	=====
Rab01	5000.000	1000.000	250.000	

Vyrovnane souradnice *****

i	i bod		priblizna	korekce	vyrovnana	str.ch.	konf.i.
====	======	===	======= hodnota ==	==== [m] ====	== hodnota ==		= [mm]
	Rab02						
2	х		4841.32590	0.00073	4841.32663	2.3	4.5
3	У		1327.81870	0.00396	1327.82266	2.0	4.0
8	Z		197.71640	-0.10819	197.60821	1.5	3.0
	Rab03						
4	Х	*	5419.06300	-0.00029	5419.06271	1.7	3.4
5	Y	*	1000.00000	0.00000	1000.00000	0.0	0.0
9	Z	*	251.76740	-0.03038	251.73702	1.9	3.8
	Rab05						
6	х		5194.54530	0.00211	5194.54741	2.7	5.2
7	У		1350.26710	0.00141	1350.26851	2.1	4.1
10	Z		192.23130	0.60672	192.83802	1.7	3.2

bod	mp	mxy	stred.	el.	chyb	konfid.	el. chy	rb g
========	[mm]	== [mm]	==== a [mm]	b	alfa[g]	==== a'	[mm] b'	======
Rab02	3.1	2.2	2.7	1.5	42.0	6.6	3.6	0.9
Rab03	1.7	1.2	1.7	0.0	200.0	4.3	0.0	0.0
Rab05	3.4	2.4	3.0	1.7	165.1	7.2	4.1	0.6

Vyrovnana pozorovani *****

i	stanovisko	cil		merena	vyrovnana	str.ch.	konf.i.
=====		======	======	hodnota ===	== [m g] ===	=== [mm cc	2] ==
1	Rab01	Rab02	smer	145.317800	145.317812	3.5	7.0
2		Rab03	smer	16.619600	16.620032	4.0	7.8
3		Rab05	smer	84.344000	84.343556	3.6	7.0
4		Rab02	sikma	367.95416	367.95356	1.5	3.0
5		Rab03	sikma	419.06652	419.06631	1.7	3.4
6		Rab05	sikma	404.72817	404.72689	1.7	3.3
7		Rab02	zenit	109.099535	109.095548	2.6	5.1
8		Rab03	zenit	99.738792	99.736121	2.9	5.8
9		Rab05	zenit	109.024857	109.021532	2.6	5.1
10	Rab02	Rab01	smer	148.278800	148.279093	3.3	6.5
11		Rab03	smer	186.724500	186.723849	3.4	6.6
12		Rab05	smer	223.621000	223.621359	3.7	7.2
13		Rab01	sikma	367.95315	367.95356	1.5	3.0
14		Rab03	sikma	666.46530	666.46575	1.8	3.6
15		Rab05	sikma	353.96561	353.96466	1.7	3.3
16		Rab01	zenit	90.908364	90.904452	2.6	5.1
17		Rab03	zenit	94.827598	94.823820	2.1	4.1
18		Rab05	zenit	100.861101	100.857965	2.8	5.5
19	Rab03	Rab01	smer	362.447400	362.447332	3.6	7.1
20		Rab02	smer	329.589800	329.589868	3.6	7.1

21		Rab01	sikma	419.06552	419.06631	1.7	3.4
22		Rab02	sikma	666.46530	666.46575	1.8	3.6
23		Rab01	zenit	100.266908	100.263879	2.9	5.8
24		Rab02	zenit	105.179402	105.176180	2.1	4.1
25	Rab05	Rab01	smer	192.038500	192.038689	3.8	7.4
26		Rab02	smer	128.355400	128.355211	3.8	7.4
27		Rab01	sikma	404.72619	404.72689	1.7	3.3
28		Rab02	sikma	353.96465	353.96466	1.7	3.3
29		Rab01	zenit	90.981545	90.978468	2.6	5.1
30		Rab02	zenit	99.145400	99.142035	2.8	5.5
Opravy	a analyza	pozorova	ani				

* * * *	* * * * * * * * * * * * *	*******	* *						
i	stanovisko	cil		f[%]	v v	r'		e-me	er. e-vyr.
====					= [mm cc]	====	=======	. mm c	2C] ===
1	Rab01	Rab02	smer	26.1	0.119	0.0	().3	0.1
2		Rab03	smer	16.6	4.317	1.6	14	ł.2	9.9
3		Rab05	smer	25.4	-4.436	1.4	-10).0	-5.6
4		Rab02	sikma	44.8	-0.601	0.3	- ().9	-0.3
5		Rab03	sikma	39.7	-0.214	0.1	- ().3	-0.1
6		Rab05	sikma	42.7	-1.281	0.5	- 2	L.9	-0.6
7		Rab02	zenit	45.5	-39.870	9.9	mk -56	5.7	-16.8
8		Rab03	zenit	38.7	-26.707	7.0	k -42	2.8	-16.1
9		Rab05	zenit	45.6	-33.247	8.3	k -41	7.2	-14.0
10	Rab02	Rab01	smer	31.4	2.927	0.8	Į.	5.5	2.6
11		Rab03	smer	29.5	-6.514	1.9	-13	3.0	-6.4
12		Rab05	smer	23.7	3.58 7	1.2	8	3.6	5.0
13		Rab01	sikma	44.8	0.407	0.2	().6	0.2
14		Rab03	sikma	46.6	0.446	0.2	().6	0.2
15		Rab05	sikma	40.6	-0.957	0.4	-1	L.5	-0.5
16		Rab01	zenit	45.5	-39.125	9.7	k -55	5.7	-16.5
17		Rab03	zenit	56.6	-37.782	8.7	k -46	5.5	-8.8
18		Rab05	zenit	41.4	-31.355	8.1	k -47	7.7	-16.4
19	Rab03	Rab01	smer	24.8	-0.681	0.2	-1	L.6	-0.9
20		Rab02	smer	24.8	0.68 1	0.2	-	L.6	0.9
21		Rab01	sikma	39.7	0.787	0.3	-	L.2	0.5
22		Rab02	sikma	46.6	0.446	0.2	().6	0.2
23		Rab01	zenit	38.7	-30.293	8.0	k -48	3.6	-18.3
24		Rab02	zenit	56.6	-32.217	7.4	k -39	€.7	-7.5
25	Rab05	Rab01	smer	21.0	1.892	0.6	5	5.0	3.1
26		Rab02	smer	21.0	-1.892	0.6	- [5.0	-3.1
27		Rab01	sikma	42.7	0.697	0.3	-	L.O	0.3
28		Rab02	sikma	40.6	0.010	0.0	(0.0	0.0
29		Rab01	zenit	45.6	-30.770	7.6	k -43	3.7	-12.9
30		Rab02	zenit	41.4	-33.650	8.7	k -52	L.2	-17.6

Odlehla pozorovani ****

i	stanovisko	cil	f[%]	v v'		e-mer	. e-vyr.
====	=================		=======	[mm cc] =	=========	== [mm cc	:] ===
7	Rab01	Rab02 zeni	t 45.5	-39.870	9.9 mk	-56.7	-16.8
16	Rab02	Rab01 zeni	t 45.5	-39.125	9.7 k	-55.7	-16.5
17		Rab03 zeni	t 56.6	-37.782	8.7 k	-46.5	-8.8
30	Rab05	Rab02 zeni	t 41.4	-33.650	8.7 k	-51.2	-17.6
9	Rab01	Rab05 zeni	t 45.6	-33.247	8.3 k	-47.2	-14.0
18	Rab02	Rab05 zeni	t 41.4	-31.355	8.1 k	-47.7	-16.4
23	Rab03	Rab01 zeni	t 38.7	-30.293	8.0 k	-48.6	-18.3
29	Rab05	Rab01 zeni	t 45.6	-30.770	7.6 k	-43.7	-12.9
24	Rab03	Rab02 zeni	t 56.6	-32.217	7.4 k	-39.7	-7.5
8	Rab01	Rab03 zeni	t 38.7	-26.707	7.0 k	-42.8	-16.1

PŘÍLOHA 6

Tabulky rozdílů testovaných hranolů.

a) rozdíly ve vodorovných směrech

č. podrobi	ného bodu	11	9	15
příbližná o	délka [m]	147	45	96
Leica s	Leica s [gon]		83,5963	126,6697
Leica bez	[gon]	87,2253	83,5964	126,6706
červený	[gon]	87,2271	83,5930	126,6689
360 I.	[gon]	87,2285	83,5975	126,6689
360 II.	[gon]	87,2275	83,5977	126,6691
v_{ber}	[mgon]	0,6	-0,1	-0,9
V _{červ.}	[mgon]	-1,2	3,3	0,8
<i>v</i> _{<i>I</i>.}	v _{I.} [mgon]		-1,2	0,8
v _{II} .	[mgon]	-1,6	-1,4	0,6

Tab. 37. Stanovisko Rab01, 15. 8. 2007, David Macho

Tab. 38. Stanovisko Rab02, 15. 8. 2007, Jiří Gresl

č. podrobi	ného bodu	11	9	15
příbližná o	délka [m]	265	335	272
Leica s	Leica s [gon]		5,4705	0,7149
Leica bez	[gon]	21,7028	5,4709	0,7156
červený	[gon]	21,6989	5,4709	0,7147
360 I.	[gon]	21,7025	5,4699	0,7163
360 II.	[gon]	21,7010	5,4714	0,7149
v_{ber}	[mgon]	-1,3	-0,4	-0,7
V _{červ.}	[mgon]	2,6	-0,4	0,2
v _{I.}	v _{I.} [mgon]		0,6	-1,4
v _{II.}	[mgon]	0,5	-0,9	0,0

	140. 57. Sumovisko (4001, 10. 0. 2007, Davia Macho								
č. podrobi	ného bodu	7	31	34	32	23	22	21	17
příbližná o	délka [m]	254	306	208	225	266	310	454	531
Leica s	[gon]	368,5657	2,9770	374,6662	0,3428	28,0592	46,3930	59,4174	71,5279
Leica bez	[gon]	368,5644	2,9774	374,6666	0,3426	28,0592	46,3928	59,4173	71,5248
červený	[gon]	368,5652	2,9774	374,6666	0,3426	28,0584	46,3928	59,4162	71,5249
360 I.	[gon]	368,5673	2,9774	374,6668	0,3435	28,0594	46,3930	59,4177	71,5256
360 II.	[gon]	368,5651	2,9776	374,6668	0,3429	28,0586	46,3940	59,4161	71,5255
v_{bex}	[mgon]	1,3	-0,4	-0,4	0,2	0,0	0,2	0,1	3,1
V _{červ.}	[mgon]	0,5	-0,4	-0,4	0,2	0,8	0,2	1,2	3,0
v _{I.}	[mgon]	-1,6	-0,4	-0,6	-0,7	-0,2	0,0	-0,3	2,3
<i>v</i> _{<i>I</i>} .	[mgon]	0,6	-0,6	-0,6	-0,1	0,6	-1,0	1,3	2,4

Tab. 39. Stanovisko Rab01, 16. 8. 2007, David Macho

Tab. 40. Stanovisko Rab03, 16. 8. 2007, Jiří Gresl (body 7 - 32), Martin Pavel (23 - 17)

č. podrobi	ného bodu	7	31	34	32	23	22	21	17
příbližná délka [m]		230	115	241	195	62	148	298	413
Leica s	[gon]	35,0340	392,0198	21,8320	399,5988	175,8836	151,8816	131,6670	137,1940
Leica bez	[gon]	35,0350	392,0212	21,8323	399,5992	175,8842	151,8809	131,6662	137,1950
červený	[gon]	35,0348	392,0186	21,8320	399,5965	175,8832	151,8800	131,6670	137,1942
360 I.	[gon]	35,0354	392,0210	21,8310	399,5986	175,8847	151,8822	131,6685	137,1926
360 II.	[gon]	35,0346	392,0187	21,8318	399,5972	175,8842	151,8796	131,6672	137,1914
v_{bex}	[mgon]	-1,0	-1,4	-0,3	-0,4	-0,6	0,7	0,8	-1,0
V _{červ.}	[mgon]	-0,8	1,2	0,0	2,3	0,4	1,6	0,0	-0,2
v _{I.}	[mgon]	-1,4	-1,2	1,0	0,2	-1,1	-0,6	-1,5	1,4
<i>v</i> _{<i>I</i>} .	[mgon]	-0,6	1,1	0,2	1,6	-0,6	2,0	-0,2	2,6

b) rozdíly v zenitových úhlech

č. podrobi	ného bodu	11	9	15
příbližná o	délka [m]	147	45	96
Leica s	[gon]	109,8797	111,8415	109,7454
Leica bez	[gon]	109,8802	111,8425	109,7448
červený	[gon]	109,8799	111,8421	109,7439
360 I.	[gon]	109,8786	111,8381	109,7457
360 II.	[gon]	109,8789	111,8385	109,7456
v _{bez}	[mgon]	-0,5	-1,0	<mark>0</mark> ,6
V _{červ.}	[mgon]	-0,2	-0,6	1,5
<i>v_I</i> .	v _{I.} [mgon]		3,4	-0,3
v _{II.}	[mgon]	0,8	0,8 3,0	

Tab. 41. Stanovisko Rab01, 15. 8. 2007, David Macho

$v_{II.}$	[mgon]	0,8	3,0	-0,2

Tab. 42. Stanovisko Rab02, 15. 8. 2007, Jiří Gresl

č. podrobi	ného bodu	11	9	15
příbližná délka [m]		265	335	272
Leica s	[gon]	92,9260	91,6322	91,1859
Leica bez	[gon]	92,9259	91,6321	91,1851
červený	[gon]	92,9264	91,6334	91,1840
360 I.	[gon]	92,9252	91,6327	91,1837
360 II.	[gon]	92,9263	91,6321	91,1850
v_{ber}	[mgon]	0,1	0,1	0,8
V _{červ.}	[mgon]	-0,4	-1,2	1,9
v _{I.}	v _{I.} [mgon]		-0,5	2,2
ν _{Π.}	[mgon]	-0,3	0,1	0,9

č. podrobr	ného bodu	7	31	34	32	23	22	21	17
příbližná o	lélka [m]	254	306	208	225	266	310	454	531
Leica s	[gon]	98,4294	100,8366	99,3755	101,0495	105,6764	108,4382	108,1746	108,1808
Leica bez	[gon]	98,4289	100,8344	99,3755	101,0474	105,6761	108,4389	108,1756	108,1819
červený	[gon]	98,4276	100,8329	99,3745	101,0456	105,6754	108,4385	108,1765	108,1820
360 I.	[gon]	98,4287	100,8348	99,3757	101,0473	105,6765	108,4384	108,1749	108,1812
360 II.	[gon]	98,4286	100,8358	99,3748	101,0462	105,6768	108,4385	108,1759	108,1817
v_{bex}	[mgon]	0,5	2,2	0,0	2,1	0,3	-0,7	-1,0	-1,1
V _{červ.}	[mgon]	1,8	3,7	1,0	3,9	1,0	-0,3	-1,9	-1,2
v _{I.}	[mgon]	0,7	1,8	-0,2	2,2	-0,1	-0,2	-0,3	-0,4
<i>v</i>	[mgon]	0,8	0,8	0,7	3,3	-0,4	-0,3	-1,3	-0,9

Tab. 43. Stanovisko Rab01, 16. 8. 2007, David Macho

Tab. 44. Stanovisko Rab03, 16. 8. 2007, Jiří Gresl (body 7 - 32), Martin Pavel (23 - 17)

1 ab. 44.	ab. 44. Stanovisko Rabus, 16. 8. 2007, Jiri Gresi (body 7 - 32), Martin Pavel (23 - 17)									
č. podrobi	ného bodu	7	31	34	32	23	22	21	17	
příbližná o	lélka [m]	230	115	241	195	62	148	298	413	
Leica s	[gon]	98,7622	103,2199	99,9331	101,7956	113,0645	112,8736	110,1022	108,7851	
Leica bez	[gon]	98,7613	103,2196	99,9317	101,7952	113,0637	112,8727	110,1024	108,7855	
červený	[gon]	98,7615	103,2132	99 <mark>,</mark> 9333	101,7958	113,0638	112,8736	110,1020	108,7846	
360 I.	[gon]	98,7614	103,2192	99 <mark>,</mark> 9331	101,7944	113,0651	112,8733	110,1017	108,7882	
360 II.	[gon]	98,7625	103,2172	99 <mark>,</mark> 9323	101,7957	113,0651	112,8735	110,1031	108,7857	
V _{bez}	[mgon]	0,9	0,3	1,4	0,4	0,8	0,9	-0,2	-0,4	
V _{čarv.}	[mgon]	0,7	6,7	-0,2	-0,2	0,7	0,0	0,2	<mark>0,</mark> 5	
V _{I.}	[mgon]	0,8	0,7	0,0	1,2	-0,6	0,3	0,5	-3,1	
<i>v</i> _{<i>I</i>} .	[mgon]	-0,3	2,7	0,8	-0,1	-0,6	0,1	-0,9	-0,6	

č. podrobi	ného bodu	11	9	15
příbližná o	délka [m]	147	45	96
Leica s	[m]	-21,324	-6,827	-13,228
Leica bez	[m]	-21,326	-6,832	-13,226
červený	[m]	-21,325	-6,833	-13,226
360 I.	[m]	-21,322	-6,830	-13,228
360 II.	[m]	х	-6,830	-13,228
V _{bez}	[mm]	2,0	5,0	-2,0
V _{červ.}	[mm]	1,0	6,0	-2,0
v _{I.}	v _{I.} [mm]		3,0	0,0
<i>v</i> _{<i>I</i>} .	[mm]	x	3,0	0,0

Tab. 45. Stanovisko Rab01, 15. 8. 2007, David Macho

Tah	46	Stanovisko	Rab02	15 8	2007	liří Gr	051
<i>1 uv</i> .	40.	SIGNOVISKO	Radd2.	13.0.	2007.	JIN GI	esi

č. podrobi	ného <mark>bodu</mark>	11	9	15
příbližná o	délka [m]	265	335	272
Leica s	[m]	27,427	41,708	35,318
Leica bez	[m]	27,427	41,708	35,321
červený	[m]	27,425	41,701	35,326
360 I.	[m]	27,430	41,704	35,326
360 II.	[m]	27,426	41,708	35,318
v_{bex}	[mm]	0,0	0,0	-3,0
V _{červ.}	[mm]	2,0	7,0	-8,0
<i>v_{I.}</i>	v _{I.} [mm]		4,0	-8,0
v _{II} .	[mm]	1,0	0,0	0,0

č. podrobi	ného bodu	7	31	34	32	23	22	21	17
příbližná o	délka [m]	254	306	208	225	266	310	454	531
Leica s	[m]	7,700	-2,572	3,490	-2,258	-22,235	-39,484	-56,688	x
Leica bez	[m]	7,702	-2,561	3,491	-2,252	-22,234	-39,488	-56,694	x
červený	[m]	7,707	-2,554	3,494	-2,246	-22,231	-39,486	x	x
360 I.	[m]	7,703	-2,563	3,490	-2,252	-22,236	-39,486	x	x
360 II.	[m]	7,704	-2,568	3,493	-2,248	-22,237	-39,486	x	x
v_{ber}	[mm]	-2,0	-11,0	-1,0	- <mark>6,0</mark>	-1,0	4,0	6,0	x
V _{červ.}	[mm]	-7,0	-18,0	-4,0	-12,0	-4,0	2,0	x	x
v _{I.}	[mm]	-3,0	-9,0	0,0	-6,0	1,0	2,0	x	x
ν _{1.}	[mm]	-4,0	-4,0	-3,0	-10,0	2,0	2,0	x	x

Tab.47. Stanovisko Rab01, 16. 8. 2007, David Macho

Tab. 48. Stanovisko Rab03, 16. 8. 2007, Jiří Gresl (body 7 - 32), Martin Pavel (23 - 17)

č. podrobr	ného bodu	7	31	34	32	23	22	21	17
příbližná o	lélka [m]	230	115	241	195	62	148	298	413
Leica s	[m]	2,271	-7,997	-1,943	-7,686	-14,754	-32,010	-49,220	x
Leica bez	[m]	2,272	-7,996	-1,938	-7,684	-14,754	-32,008	-49,219	x
červený	[m]	2,273	-7,985	-1,944	-7,683	-14,754	-32,012	-49,220	x
360 I.	[m]	2,274	-7,996	-1,944	-7,682	-14,754	-32,008	-49,216	x
360 II.	[m]	2,270	-7,992	-1,940	-7,686	-14,754	-32,009	-49,222	x
v _{bez}	[mm]	-1,0	-1,0	-5,0	-2,0	0,0	-2,0	-1,0	x
V _{červ.}	[mm]	-2,0	-12,0	1,0	-3,0	0,0	2,0	0,0	x
<i>v</i> _{<i>I</i>.}	[mm]	-3,0	-1,0	1,0	-4,0	0,0	-2,0	-4,0	x
ν <u>π</u> .	[mm]	1,0	-5,0	-3,0	0,0	0,0	-1,0	2,0	x