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General Introduction

1.  INTRODUCTION

The freshwater copepods inhabit almost all types of biotopes from subterranean caves to water 

collected in bromeliad leaves or leaf litter on the ground as well as streams, rivers and lakes. The name 

„Copepod“ arose from Greek Kope for „oar“ and Podos for „foot“. Hence copepod means oar-footed, 

referring to the pair of swimming legs on the same somite that are moved together, like the oars of a 

sculling shell.

Ecologically, copepods represent an important interlinks in the food chain connecting microscopic 

food particles to juvenile fi sh (e.g. Sommer, 2008; Takahashi et al., 2008). Copepods have also potential 

to act as a control mechanisms for malaria by consuming mosquito larvae (e.g. De Roa et al., 2002; 

Pernia et al., 2007), and contrariwise they represent intermediate hosts of many human and animal 

parasites as well (e.g. Lahnsteiner et al., 2009; Moravec, 2009).

The external morphology of copepods is quite conservative, with elongated, segmented body 

covered by chitinous exoskeleton. Moreover in terms of cyclopoid copepods, body is divided into 

several functional parts such as prosome and urosome. The prosome is composed of cephalosome 

and four thoracal somites each bearing particular appendages, and urosome consists of genital 

doublesomite, two urosomites and anal somite. The body is usually terminated by two furcal rami 

bearing either six furcal setae (Dussart and Defaye, 2001). 

1.1.  COPEPOD TAXONOMY

Planktonic crustaceans are in general susceptible to certain morphological phenotypic plasticity, 

especially in terms of water fl ea (Cladocera). The body shape and size change according to diff erent 

biotic and abiotic factors (temperature, food availability, predator presence etc.) resulting in extension 

or shortening of particular body parts, and presence of spinular rows or patches (Lass and Spaak, 2003; 

Laforsch and Tolrian, 2004; Petrusek et al., 2009; Zuykova and Bochkarev, 2010). Although with no such 

a visible modifi cations as commonly reported in water fl eas, copepods also undergo changes induced 

by environmental factors. These changes are in most cases in type of armature (seta/spine appearance) 

or in extension/shortening of furcal rami (Coker, 1932a).

Moreover, especially the type of armature, in the meaning of setae or spine presence and their 

number, were used as a species specifi c character in many Cyclopoid Copepod species for a long time. 

The genera such as Acanthocyclops or Diacyclops are notoriously known examples of complicated 

interspecies taxonomical relationships (Monchenko, 2000; Stoch, 2001; Dodson et al., 2003). Species 

within genera are characteristic by high phenotypic plasticity, which resulted in clustering of similar 

species into cryptic species complexes. In addition, a lot of such a species are living sympatricaly, 

superfi cially morphologically almost indistinguishable.

At the beginning, copepod taxonomy was based on diff erences in size, number of exopodal spines 

in swimming legs, and later more characteristics were added. Consequently, Kiefer (1927, 1929) 

established traditional systematic of the cyclopoid copepods, especially at generic level. Kiefers’ 

systematic classifi cation was based on the structure and armature of the fi fth leg, followed by others 

(Rylov, 1948; Yeatman, 1959; Dussart, 1969; Monchenko, 1974). Kiefer also established the system where 

family Cyclopidae was subdivided into three subfamilies as follow: the Halicyclopinae, Eucyclopinae 

and Cyclopinae, and recognized most of subgenera including Acanthocyclops within the subfamily 

Cyclopinae. 

With emergent demands for precise species discrimination especially within such problematic 

species complexes, other more promising methods were introduced. The most common was breeding 
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compatibility, originated from the principle of species, established by Dobzhansky (1937) and Mayr 

(1941) as a “biological species concept”. A primary purpose of breeding experiments was to determine 

whether morphologically similar populations correspond with reproductively compatible groups. 

When morphological traits failed to distinguish interspecies diff erences, the cytogenetic and molecular 

approaches were widely used (e.g. Eisnlei, 1993; Grishanin and Akifi ev, 2000; Wyngaard and Rasch, 

2000). 

Although quite labour, not so dependent on technique equipment, analyses of chromosome 

number were carried out much earlier (Krüger, 1911; Chambers, 1912). However, just molecular 

methods analysing diff erences in the DNA sequences open new chapter in biological science as well 

as in species discrimination and understanding variety of evolutionary trends. So far, the majority 

of published molecular studies deal with marine copepods (e.g. Bucklin et al., 1999, 2003; Lee, 2000; 

Caudill and Bucklin, 2004; Thum, 2004), and it seems that markers widely used for them are less effi  cient 

in freshwater copepods. However several studies on freshwater copepods have recently appeared 

(Alekseev et al., 2006; Grishanin et al., 2005, 2006; Ki et al., 2009; Bláha et al., 2010; Wyngaard et al., 

2010).

1.2.  EVOLUTION OF Acanthocyclops vernalis-robustus GROUP TAXONOMY

In the middle of 19th century, the two probably the most discussed Acanthocyclops species were 

described. The fi rst one was described by Fisher (1853) as a Cyclops vernalis and second one by Sars 

(1863) as a Cyclops robustus. 

More detailed description of both species was later provided by Sars (1918).  However, the main 

discriminating criterion was still the spine formula and the nature of the setae, C. vernalis and 

C. robustus were attributed with spine formula 2 3 3 3 and 3 4 4 4, respectively, varying to 3 4 4 4 in 

A. vernalis quite often. 

The American copepodologist, C.L. Herrick (1882, 1884) described representatives of Cyclops 
synonymized C. vernalis with C. parcus and C. robustus with C. brevispinosus. Soon after, stated that 

these species were same as species reported from Europe (Coker, 1934; Yeatman, 1944; Dodson, 1994). 

In addition, Marsh (1892) described another species C. americanus. This species was fi rst identifi ed 

in Europe by Lowndes (1926, 1928b) who gave remarks for its distribution and provided its detailed 

description (see also Monchenko, 1974; Alekseev, 1998; Alekseev et al., 2002). However, later the name 

A. americanus was used as a synonym for both A. vernalis (Gurney, 1933) and A. robustus (Petkovski, 

1975 – f. limnetica; Kiefer, 1976; Dussart and Fernando, 1989), and after all rejected by Kiefer (1976).  

Due to enormous morphological plasticity determined by Lowndes (1928a), Dodson (1994), Lescher-

Motoue (1996), Caramujo and Boavida (1998) or Dodson et al. (2003), precise species determination was 

diffi  cult. Moreover, it became clear, that using character such as number of spines/setae in exopodite 

of swimming legs undergoing high variation, and is therefore limited for proper species discrimination. 

Thus, similar Acanthocyclops species were grouped into clusters called robustus or vernalis species 

group according to major diff erentiate characteristic. These major discriminating characteristics, i.e. 

the shape of genital double somite and ratio of two apical spines in enp3 P4, resulted from revision of 

vernalis-robustus group provided by Kiefer (1976), who compared a lot of populations from both sides 

of Atlantic Ocean.

Also other attempts to fi nd species specifi c characteristics failed usually due to high phenotypic 

plasticity apparent even among siblings (Dodson, 1994; Dodson et al., 2003). Nevertheless, Dodson 

(1994) and Dahms and Fernando (1997) redescribed A. brevispinosus diff ering from other Acanthocyclops 

members ecologically and morphologically.
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Mirabdullayev and Defaye (2002, 2004) have greatly contributed to solving morphologically robustus 

species group. The new species delineation was based on characters of enp3 P4, shape of receptaculum 

seminis, and also some of microcharacters attributed to mouth appendages. Based on detailed 

morphological study of Sars’ and Kiefer’ samples as well as a number of specimens identifi ed as A. 
robustus from Europe and North America, they separate new species, namely A. trajani (Mirabdullayev 

and Defaye, 2002) and A. einslei (Mirabdullayev and Defaye, 2004), and redescribed A. robustus. 

1.3. DIFFERENTIAL DIAGNOSES OF SPECIES WITHIN Acanthocyclops vernalis-robustus 
  SPECIES COMPLEX

Acanthocyclops vernalis-robustus species complex contains presently known, taxonomically valid 

species A. robustus, A. trajani, A. einslei, A. brevispinosus and A. vernalis. These species diff er from 

each other by following characteristics. 

Acanthocyclops einslei and A. brevispinosus markedly diff er from other robustus species complex in 

the site of lateral spine insertion in enp3 P4, which is nearer to the apical end of the segment. Whereas the 

other three species has this seta/spine located more proximally, near the centre of the segment. These 

two species diff er from each other by pattern of spinules in proctodeum. The A. brevispinosus have 

patchy pattern of spinules in proctodeum but in A. einslei is presented as a single row (Mirabdullayev 

and Defaye, 2004).

Acanthocyclops robustus diff ers from known species of vernalis-robustus complex by the 

ornamentation of the basipodite of antenna having spinules near the exopodal seta, and from 

A. trajani by missing spinules in claw-like seta in basipodite of maxilla, and by length ratio of innermost 

and outermost furcal seta (Mirabdullayev and Defaye, 2002). 

Acanthocyclops vernalis diff ers from all species from robustus complex (A. trajani, A. einslei and A. 
brevispinosus) in the shape of genital double somite tapered in proximal part into blunt lobes on either 

side, and in ratio of two apical spines in enp3 P4 with inner always shorter than outer, but having 

opposite pattern in A. trajani as already mentioned by Kiefer (1976) or Dodson (1994). However, these 

authors synonymised A. trajani with A. robustus. 

1.4. DISTRIBUTION AND ECOLOGY OF Acanthocyclops vernalis-robustus
  SPECIES COMPLEX

Acanthocyclops robustus s.s. inhabits waterbodies of Scandinavia, Canada and northern regions 

of USA. According to Mirabdullayev and Defaye (2002) records of this species from northern Russia 

are expected as well. These authors described A. robustus as a species that seems to be “probably 

planktonic”, however Sars (1918), in original description attributed this species as a “true bottom-form, 

keeping constantly close to the ground”. Additional data about distribution and ecology of this species 

are poor, since most of studies dealing with A. robustus dealt in fact with A. trajani (e.g. Einsle, 1977; 

Vijverberg and Richter, 1982; Roche, 1990; Caramujo and Boavida, 1999).

Acanthocyclops trajani has holarctic distribution, except Scandinavia (Mirabdullayev and Defaye, 

2002). Occurrence in South America is also expected, since references about A. robustus from this 

area appeared in literature (e.g. Trochine et al., 2006; González et al., 2008) and as mentioned above, 

most of ecological studies of A. robustus dealt in fact with A. trajani. (e.g. Ponyi, 1967; Purasjoki and 

Viljamaa, 1984; Caramujo and Boavida, 1998; Hopp and Maier, 2005). However without any fi gure which 

clearly displaying the fourth swimming leg is quite diffi  cult to make a fi nal consideration. Moreover, 
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this species inhabits ponds, fi shponds, lakes and reservoirs in all of which, it is the dominant copepod 

species.  During summer, usually reach a high density of 40000 ind m-3 (Vijverbegr, 1977; Alekseev et 

al., 2002). Purasjoki and Viljamaa (1982) also reported occurrence in eutrophicated brackish water of 

Helsinki bay, reaching densities up to 1.106 ind.m-3, indicating tolerance to certain salinity.

Acanthocyclops einslei inhabits waterbodies of Eurasia (except Scandinavia) and North America 

(Mirabdullayev and Defaye, 2004). Occurrence even in Australia can be presumed based on detailed 

description and fi gures provided by Morton (1985), and implying rather A. einslei than presented 

A. robustus. This species can be found in ponds, ditches and littoral zone of larger lakes cooccuring 

also with A. trajani (Mirabdullayev and Defaye, 2004). 

Acanthocyclops brevispinosus occurs in Canada and North America, being found usually in larger lakes 

and ponds as a typical planktonic species (Mirabdullayev and Defaye, 2004), although Dodson (1994) 

mentioned discovery of this species from temporary ponds or stream littoral under water reservoirs. 

Since this species is already known for more than hundred years, probably due to long time confusion 

with other members of Acanthocyclops species complex, knowledge about ecology is still poor.

Acanthocyclops vernalis has probably worldwide distribution with well documented records from 

all continents. However reliability of these records is questionable (Einsle, 1996). Especially in North 

America is still being regarded as a complex of several reproductively separated species (Dodson et al., 

2003; Grishanin et al., 2006) that can be found in diff erent habitats and conditions from small ponds, 

ditches, temporary pools to littoral parts of larger reservoirs. The species strictly inhabit litoral parts of 

water bodies and never reach pelagic zone. The species is also frequently found in groundwater and 

interstitial space (Fryer, 1985; Jersabek et al., 2001; Alekseev et al., 2002). However in certain conditions 

such as acidifi ed lakes, it inhabits open water (Nillsen and Wærvågen, 2003; Hořická et al., 2006). In 

conditions of Central Europe normally occurs during spring and autumn with diapause at fourth 

copepodid stage (Einsle, 1996).

1.5.  MOLECULAR METHODS IN ANALYSES OF Acanthocyclops 
  vernalis-robustus COMPLEX

Within such a complicated copepod genus, which Acanthocyclops vernalis-robustus defi nitely is, 

morphological approaches have limited using. 

Molecular studies become powerful tool for species discrimination on DNA level, and for assessing 

species phylogenetic relationships. In terms of Acanthocyclops vernalis-robustus, phylogenetic 

relationships are hardly available due to phenotypic plasticity in certain characteristics usually using 

for species discrimination. In addition, molecular studies revealed hidden cryptic species within 

Acanthocyclops species (Bláha et al., 2010) and also other copepods with highly conserved morphology 

(e.g. Lee and Frost, 2002; Chen and Hare, 2008; Thum and Harrison, 2009). 

The most useful molecular markers inferring phylogenetic relationships of lower taxonomic units 

(genera or species level) are mitochondrial genes whereas nuclear genes are used rather for assessing 

phylogenetic relationships between higher taxonomic groups (Avise, 1994, 2000). The widely used is 

mitochondrial gene for Cytochrome Oxidase subunit I (COI) (Bucklin et al., 1999; Hill et al., 2001; Machida 

et al., 2004; Chen and Hare, 2008), large subunit of ribosomal ribonucleic acid (16S rRNA), (Bucklin et al., 

1992, 1995; Lindeque et al., 1999; Caudill et al., 2004), or their combination (Lee, 2000; Lefébure et al., 

2006). In terms of nuclear genes most studies analysed partial segments of 18S ribosomal DNA (rDNA) 

(Thum, 2004; Bucklin et al., 2003) and ITS (Internal transcribed spacer) region of ribosomal DNA (Ki et 

al., 2009a; Marzsalek et al., 2009; Thum and Harrison, 2009).

However, some molecular markers were quite useful in calanoid copepods, but less effi  cient in 
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cyclopoid copepods, which is case of COI and 16S rRNA. These genes have never been used in studies 

of cyclopoid copepods. Contrariwise widely used are nuclear genes. From the small amount of 

molecular studies concerning freshwater cyclopoid copepods (Alekseev et al., 2006; Ki et al., 2009b; 

Bláha et al., 2010; Wyngaard et al., 2010), just three contributed to solving Acanthocyclops problem 

(Grishanin et al., 2005, 2006; Bláha et al., 2010). In most cases nuclear sequences show low variability in 

the species level e.g. in Eucyclops (Alekseev et al., 2006), Mesocyclops (Wyngaard et al., 2010) as well as 

in Acanthocyclops (Grishanin et al., 2005). 

IN THIS THESIS

The overall aim of present thesis was to make comprehensive study combined morphological and 

molecular approaches to better understand complicated situation within Acanthocyclops species 

complex.

The specifi c objectives were to:

 •• describe developmental stages of newly described species (A. trajani and A. einslei), and to 

provide distinguishing characteristics; 

 

 •• determine taxonomic position of newly described species within Acanthocyclops species 

complex using molecular methods;

 •• obtain new insight into the morphological and molecular patterns of the Acanthocyclops 

species complex.
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Introduction
Throughout the animal kingdom there are numerous

species that show subtle morphological differences from

sister taxa. Morphological stasis represents an evolutionary

constant, and cryptic metazoan diversity predictably affects

estimates of earth’s animal diversity (Pfenninger &

Schwenk 2007). Recent molecular phylogenetic and phylo-

geographical research has provided a powerful tool in the

recognition of divergent clades that would have escaped

notice because of their close morphological convergence

(e.g. Lee 2000; Lee & Frost 2002; Mathews et al. 2008).

This is the case within Acanthocyclops (Kiefer 1927), which

is among the five most speciose genera of cyclopoid copepod

subfamilies, Cyclopinae, with more than 60 valid species

and subspecies. Many of them are cosmopolitan or

Holarctic, living in surface or subsurface fresh waters. A

few species are strictly subterranean (Boxshall & Halsey

2004; Dussart & Defaye 2006). However, understanding

the taxonomy and phylogenetic relationships among them

has remained a challenge. This, together with incomplete

descriptions, has resulted in many species with uncertain

status (Reid et al. 1991; Einsle 1996) and a progressively

complex taxonomy that relies on only a few quite stable

characters. Confounding effects include high phenotypic

plasticity with extensive intraspecific morphological varia-

tion, as well as interspecific morphological similarity

because of high morphological stasis, which can result in

undetected cryptic speciation (Hebert 1998).

One relevant example of a cryptic species complex in

the genus Acanthocyclops is the Acanthocyclops vernalis or
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vernalis-robustus species complex. But in fact, each of the

species A. vernalis and Acanthocyclops robustus is itself a spe-

cies complex (e.g. Petkovski 1975; Kiefer 1976). These

complexes are poorly defined, and different geographical

regions have been subjected to different taxonomic treat-

ments. In the past, the designation A. robustus has been

frequently applied to individuals inhabiting most Holarctic

habitats. More recently, Mirabdullayev & Defaye (2002)

reported its existence only in Scandinavia and North

America, whilst A. vernalis, is described by Kiefer & Fryer

(1978), Purasjoki & Viljamaa (1984), and Einsle (1996) as

inhabiting the entire Holarctic region. Currently, A. robu-

stus is considered to be a separate species, as it differs

morphologically from all species of the A. robustus species

complex by the ornamentation of the basipodite of

antenna, with spinules near the exopodal seta. Addition-

ally, Mirabdullayev & Defaye (2002, 2004) described two

new species (Acanthocyclops trajani and Acanthocyclops einslei)

in the A. robustus species complex and have re-described

A. robustus based on Sars’s collection and newly collected

material.

The newly described species have been previously

referred to as A. robustus (A. trajani) and either A. vernalis

or A. robustus (A. einslei) or morphological varieties of

either species (Petkovski 1975; Caramujo & Boavida

1998). The morphological traits of Acanthocyclops are

highly variable, and morphology is inadequate for under-

standing phylogenetic relationships within the genus. To

overcome this constraint, our study, based on three inde-

pendent data sets of nuclear and mtDNA, and morpholog-

ical divergence, extends the data on genetic and

phylogenetic relationships among species complexes of the

cyclopoid genus Acanthocyclops.
The primary purpose of this study was to develop a

phylogenetic framework of newly described species from

Europe (A. trajani and A. einslei) belonging to the A. robu-

stus species complex. The objectives were: (i) to clarify

whether the phenotypic subdivision and morphological

variability is related to genetic divergence; (ii) to test the

predictions based on morphological investigations of

cryptic diversity; and (iii) to obtain insights into the

morphological and molecular evolution of the Acanthocy-

clops species complex.

Materials and methods
Collection, preservation and determination

Samples were collected from ponds, temporary pools,

rivers, lakes, and reservoirs of central Europe using an

80-lm mesh size plankton net (Table 1). Samples were

preserved in 96% ethanol. Adult females were indepen-

dently identified, as to species, by two researchers (JS, MB)

according to Mirabdullayev & Defaye (2002, 2004) and

Einsle (1996). Because, we were unsuccessful in obtaining

specimens of North American Acanthocyclops species and

A. robustus, the morphological study addresses only three

nominal species, A. trajani, A. einslei, and A. vernalis.

Morphology

In total, 179 individuals of Acanthocyclops species from 22

populations were measured. Specimens were immersed in

a drop of lactic acid to clear non-exuvial material. Phase

contrast photographs of whole body (dorsal view) and the

dissected fourth pair of swimming legs were taken with a

binocular microscope Olympus BX51 fitted with an

Olympus E-510 digital camera. Subsequently, measure-

ments were obtained using Quick PHOTO CAMERA 2.2

software (Olympus, Hamburg, Germany). Measurements

of the fourth swimming leg distal endopodite (enp3P4)

were made: length (L enp3P4), width (W enp3P4), dis-

tance from the beginning of enp3P4 to the site of inner

lateral seta ⁄ spine insertion (Lo), and lengths of internal

apical spine (IAS) and external apical spine (EAS). Length

(Lfu) and width (Wfu) of furcal rami and length of furcal

setae (Si, Smi, Sme, Se) were also recorded (Fig. S1). Sta-

tistical significance of morphological indices was assessed

with statistical software Statistica 6.0, using the non-para-

metric Kruskal–Wallis test.

Molecular analyses

Total genomic DNA was extracted from whole individuals

using E.Z.N.A.� Tissue DNA Mini Kits (Peqlab, Erlan-

gen, Germany) following the manufacturer’s protocol.

Fragments including part of the mitochondrial gene 12S

rRNA (430 bp) and nuclear 18S rDNA (620) were ampli-

fied using PCR primers L13337 and H13845 for 12S

rRNA (Machida et al. 2004) and primers 18s329 and 18sI

for 18S rDNA (Grishanin et al. 2005). The PCR reaction

was done in an Eppendorf Master Gradient cycler. The

amplification reaction consisted of 5 lL of PPP Master

mix [50 mM Tris–HCl, pH 8.8, 40 mM (NH4)2SO4, 0.02%

Tween 20.5 mM MgCl2, 400 lM dATP, 400 lM dCTP,

400 lM dGTP, 400 lM dTTP, and 100 U ⁄mL Taq-Purple

DNA polymerase], 0.3 lL of each primer (10 pmol ⁄lL),
1 lL genomic DNA, and sterile water to a final volume of

15 lL. The PCR protocol consisted of 2 min initial dena-

turation at 95 �C, followed by 5 cycles consisting of dena-

turation at 95 �C for 1 min, annealing at 55 �C for 1 min,

extension at 72 �C for 1 min, and another 30 cycles con-

sisting of denaturation at 95 �C for 30 s, annealing at

55 �C for 45 s, and extension at 72 �C for 1 min. A final

extension at 72 �C lasted for 7 min. For sequencing, the

PCR products were purified by the Nucleospin� (Mache-

rey-Nagel, Düren, Germany). Purified products were sub-

sequently sequenced on ABI automatic capillary sequencer
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Table 1 List of analysed Acanthocyclops species populations.

Taxon

Country collection

locality ⁄ acc. no. GenBank
Population

code Type of locality (altitude) Latitude (N) Longitude (E)

Analysed

gene Haplotype

Acanthocyclops einslei

Czech republic

Lužnice river, Majdalena* Ecz1 Pool in river inundation area 48�58¢21" 14�51¢53" 12S E1

Lužnice river, Halámky* Ecz2 Pool in river inundation area 48�51¢1" 14�54¢29" 12S E3

Strakonice, Hluboká Pálenina* Ecz3 Fishpond 49�14¢39" 13�52¢6" 12S E2

Volyňka river, Strakonice* Ecz4 River littoral 49�14¢8" 13�53¢44" 12S E2

Sokolov Ecz5 Pool 50�12¢16¢’ 12�38¢39" 12S E2

Blanice river, Vodňany* Ecz6 River littoral 49�9¢38¢’ 14�9¢ 68" 12S E2, E3

Bohuslavice* Ecz7 Temporary pool 49�49¢13" 16�55¢56" 12S E2

Strakonice, Sousedovice Ecz8 Pool 49�13¢47" 13�52¢17" 12S E4

Slovakia

Velké Kapušany Esk1 Temporary pool 48�30¢ 22�02¢ 12S E2

Acanthocyclops trajani

Czech republic

Třeboň, Velký Tisý Tcz1 Extensive fishpond 49�4¢2" 14�42¢30" 12S T1

Jaroslavice, Zámecký* Tcz2 Fishpond 48�45¢40" 16�14¢10" 12S T2, T3

Strakonice, Hluboká Pálenina* Tcz3 Fishpond 49�14¢39" 13�52¢6" 12S T1

Strakonice, Močidlo* Tcz4 Extensive fishpond 49�13¢47" 13�52¢26" 12S T1, T4

Bohuslavice* Tcz5 Temporary pool 49�4913" 16�55¢56¢’ 12S T1

Doubravice, Mostek* Tcz6 Fishpond 49�44¢29" 16�57¢42" 12S T1

Klopina Tcz7 Fishpond 49�48¢25" 17�1¢7" 12S T1

Šumvald Tcz8 Fishpond 49�49¢2" 17�6¢52" 12S T1

Dolni Libina* Tcz9 Fishpond 49�51¢9" 17�6¢12" 12S T1

Blatná, Vitanov* Tcz10 Fishpond 49�25¢6" 13�49¢29" 12S T1

Paštiky* Tcz11 Fishpond 49�26¢32" 13�53¢56" 12S T1

Smyslov Tcz12 Fishpond 49�25¢11" 13�48¢37" 12S T1

Police* Tcz13 Fishpond 49�48¢20" 16�59¢56" 12S, 18S T1

Nové Hrady, Pı́sař Tcz14 Fishpond 48�48¢1" 14�46¢18" 12S, 18S T1

Žadlovice Tcz15 Fishpond 49�45¢7" 16�54¢8" 12S T1

Spain

Rio Guadiana, Badajoz Tsp1 River littoral 38�51¢34" 7�01¢ 12S, 18S T1

Portugal

Lagoa da Vela Tpt1 Eutrophic lake 40�16¢01" 8�46¢60" 12S T1

Greece

Doiranis* Tgr1 Lake 41�12¢22" 22�45¢12" 12S T5

Petron Tgr2 Lake 40�44¢59" 21�46¢47" 12S T6

USA

Short Pond 1, Chippewa County,

WI ⁄ AY643524–26
S115, S130, S142 Shallow lake 45�23¢41" 91�11¢84" 18S –

Acton Lake, Butler County,

OH ⁄ AY643530–32
AC8–AC10 Eutrophic lake 39�55¢77" 84�73¢45" 18S –

Trek Pond, WI ⁄ AY643522 Tre1 Urban lake 43�06¢06" 89�52¢37" 18S –

Acanthocyclops vernalis

Czech republic

Lužnice river, Majdalena Vcz1 River littoral 48�58¢ 21" 14�51¢ 54" 12S V1

Velky Močál* Vcz2 Moss lake (920 m) 50�23¢32" 12�37¢59" 12S V6

Strakonice, Hluboká Pálenina* Vcz3 Fishpond 49�14¢39" 13�52¢6" 12S V1–V4

Volyňka river, Strakonice* Vcz4 River littoral 49�13¢ 34" 13�53¢ 58" 12S, 18S V1

Kralický Sněžnı́k* Vcz5 Spill (1300 m) 50�12¢4" 16�50¢54" 12S V7

Labe river, Pardubice Vcz6 River littoral 50�2¢58" 15�46¢46" 12S V1

Strakonice, Sousedovice* Vcz7 Temporary pool 49�13¢ 49" 13�52¢ 39" 12S V1,V5

Strakonice, Sousedovice Vcz8 Forest pool 49�13¢ 33" 13�52¢ 16" 12S V7

Slovakia

Rimavská Baňa Vsk1 Temporary pool 48�30¢ 38¢’ 19�55¢ 54¢’ 12S V8,V9

Bulgary

Todorini Oči* Vbu1 Ice lake (2100 m) 41�45¢ 23�25¢ 12S V10
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(series 373) (Macrogene, Seoul, Korea). Fragments of 12S

rRNA (430 bp) and 18S rDNA (620 bp) were sequenced

using the same primers as those used for the amplification.

Sequence data analyses

All together, 150 individuals representing the three species

collected were used in sequencing and phylogenetic analysis.

Megacyclops viridis (Jurine, 1820) (details in Table 1) and

Mesocyclops thermocyclopoides Harada, 1931 (acc. no. in

GenBank EF581894) were used as outgroups for 12S rRNA

and 18S rDNA, respectively. For comparative purposes, the

set of 18S rRNA Acanthocyclops sequences from Nearctic

populations from GenBank were used (acc. nos AY643521–

AY643531). DNA sequences for each species were aligned

using CLUSTAL W (Thompson et al. 1997) incorporated

in MEGA version 4 (Tamura et al. 2007). Sequence diver-

gences between and within main clades were calculated for

the distinct clades (species) sequences (excluding outgroups)

using DNASP version 4.90.1 (Rozas et al. 2003).

Phylogenetic analyses

The phylogenetic relationships of Acanthocyclops species

were constructed using partial 12S rRNA gene and a part

of the 18S rDNA gene sequences. Bayesian analysis was

conducted using MrBayes 3.1.2 (Ronquist & Huelsenbeck

2003). A Markov Chain Monte Carlo (MCMC) analysis

was run for 2 million generations, with two parallel runs

of four chains run simultaneously, and sampled every

100th generation. The first 25% of sampled generations

were discarded as a burn-in process. The remaining trees

were used to construct the phylogram. The best-fit model

of nucleotide substitution selected by ModelTest 3.7

(Posada & Crandall 1998) was the General Time Revers-

ible plus Gamma (GTR + C) for 12S data set and the

Hasegawa-Kishino-Yano (HKY) for the 18S dataset.

These models were chosen based on the likelihood score

and Akaike information criterion (AIC) from 28 models.

In addition, phylogenetic analyses were conducted using

the maximum parsimony and neighbor-joining method

executed in MEGA version 4 (Tamura et al. 2007). The

MP tree was obtained using the close-neighbor-inter-

change algorithm (Nei & Kumar 2000) with search level 3

(Felsenstein 1985). The neighbor-joining method for

constructing a tree based upon maximum composite-likeli-

hood and the Kimura 2-parameter algorithm was used.

Divergence time was estimated from the Kimura

2-parameter distance, calculated using MEGA version 4

on the mitochondrial 12S data set, assuming a clock-like

mutation rate for mitochondrial DNA. Substitution rates

of 0.9% (decapod 16S gene – Schubart et al. 1998) and of

1.4% per million years (decapod COI gene – Knowlton &

Weigt 1998) have been used in previous studies. A substi-

tution rate of 1.2% per million years was used in the pres-

ent study.

Relationships among haplotypes were inferred using the

statistical parsimony method (Templeton et al. 1992). A

parsimony network was estimated with Network software

version 4.109 (Bandelt et al. 1999) using the default 0.95

probability connection limit.

Results
Sequence variation and alignments

Of 56 ingroup specimens from 36 locations sequenced for

12S rRNA, 22 haplotypes were detected. The 12S rRNA

Table 1 (Continued).

Taxon

Country collection

locality ⁄ acc. no. GenBank
Population

code Type of locality (altitude) Latitude (N) Longitude (E)

Analysed

gene Haplotype

Montenegro

Velké Skrčko* Vmn1 Ice lake (2000 m) 43�8¢8" 19�0¢55" 12S V11

Switzerland

Lac du col du Gd St Bernard* Vsu1 Ice lake (2450 m) 45�52¢06" 7�10¢03" 12S, 18S V12

USA

Short Pond 1, Chippewa County,

WI ⁄ AY643523
S102 Shallow lake 45�23¢41" 91�11¢84" 18S –

Parejko Pond, Chippewa County,

WI ⁄ AY643521
Pa26 Shallow lake 45�23¢41" 91�11¢84" 18S –

State Highway 14, Dane County,

WI ⁄ AY643527–29
CD60, CD61, CD69 Road ditch 43�09¢31" 89�60¢22" 18S –

Megacyclops viridis

Czech republic

Moravičany MV Forest pool 49�45¢12" 16�59¢8" 12S –

Mesocyclops

thermocyclopoides ⁄ EF581894
MO 18S –

*Populations used in morphological analysis.
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sequences were unambiguous, with no indels, and

contained 105 variable and 87 parsimony informative sites.

Pairwise Kimura 2-parameter (K2P) genetic distances

among four main clades, designated A, B, C, and D,

ranged from 0.124 to 0.194. Observed K2P distances

between ingroups and outgroup, represented here by

M. viridis, were 0.253–0.272.

Mitochondrial gene tree

All phylogenetic methods (Bayesian analysis, MP, NJ)

resulted in trees that did not differ in main topology,

i.e. all specimens were assigned to the same four main

clades, and the relationships among these clades was

stable (Fig. 1A). The few differences observed with the

different methods were mostly related to terminal

branch swapping. Clades were distinct from one another;

sequence divergences among them ranged from 20%

(between clades A and B) to 27.6% (between clades A

and C).

Clades A and B, represented here by species A. trajani

and A. einslei, formed monophyletic clades. Average

sequence divergences within these two clades were 3.3%

and 2.5%, respectively. Clades C and D contained well-

supported lineages (V12 and V4), differing from the rest

of the clade by 7% and 4%, respectively. Sequence diver-

gences within the rest of clades C and D were almost the

same and ranged from 0.7% to 8%.

18S rRNA gene tree and concordance among the

mitochondrial and the nuclear phylogenies

Nuclear DNA was applied to test the similarity of Euro-

pean and American individuals by using existing

sequences in GenBank. Phylogenetic analyses revealed

two major genetically divergent and well-supported clades

corresponding to A. trajani and A. vernalis morphotypes,

i.e. Grishanin’s specimens from Wisconsin and Ohio

populations were clustered together with specimens from

Europe, undoubtedly identified as either A. trajani or A.

vernalis, and composed two main clades (Fig. 2S). The

cluster pattern of these clades within the nuclear tree was

almost identical to the pattern of the mitochondrial

DNA tree.

Fig. 1 A–B. Phylogenetic relationships

within Acanthocyclops based on mitochon-

drial 12S rRNA. —A. Fifty per-cent

majority-rule consensus tree of the

Bayesian Inference (BI) showing relation-

ship of the main haplotypes. The node

support: bootstrap ML ⁄MP ⁄BI. A–D:

main clades in the Acanthocyclops species

complex (seeTable 1 for the location of

main haplotypes). —B. Haplotypes

association of Acanthocyclops species. Each
dark node within parsimony network

represents a hypothetical missing or

unsampled ancestral haplotype. Circle size

corresponds to the number of individuals

sharing the particular haplotype. A–D

corresponds to main clades in consensus

tree.
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Haplotype network

Specimens represented 36 populations from European

locations (Table 1). DNA sequence analysis of mtDNA

identified 22 haplotypes among analysed species (Fig. 1B).

Acanthocyclops trajani (clade A) formed six haplotypes.

Central haplotype T1 includes most of the population

from the Central Europe; however, individual specimens

from Spain and Portugal were also represented. Connected

haplotypes (T2–T4) comprise populations from ponds in

the Czech Republic and populations from Greece (T5 and

T6). Acanthocyclops einslei (clade B) is characterized by four

haplotypes. The most divergent are haplotypes within A.

vernalis morphotype clade C, which originated in mountain

lakes within the Czech Republic (V6, V7) and the Balkan

countries (V10, V11) and in isolated periodic pools in

South Bohemia (V11) and Slovakia (V8, V9). Lineage V12

is represented by a population (Vsu1) in the Swiss western

Alps. Sequence divergences between this haplotype and the

remaining haplotypes in clade C were 11.3–18.0%. Acanth-

ocyclops vernalis morphotype clade D formed four haplo-

types. Central haplotype V1, together with other

haplotypes in this clade (V2–V4), originated in a single

pond. Divergences between haplotype V4 and the others

within the clade ranged from 2.8% (V1) to 18% (V2).

The age of the Acanthocyclops species complex and the

time scale for the diversification can be only approximately

estimated, as no fossil calibration exists for copepods.

Using the range of genetic distances found in the litera-

ture for other crustaceans, the probable time of divergence

of particular clades was assessed. Kimura 2-parameter

distances between clade A (A. trajani) and clade B (A. eins-

lei) were 0.124–0.147, which corresponds to a divergence

time of �10–12 MYA. Clades C and D (A. vernalis mor-

photypes), with distances of 0.143–0.184, probably

diverged 12–15 MYA. Acanthocyclops species separated from

a common ancestor with M. viridis approximately 21.0–

22.6 MYA.

Morphological variation within the Acanthocyclops species

complex

In total, 179 individuals of Acanthocyclops species from 22

populations were measured (Table 2). Rather than simple

length characteristics, length ratios of furcal rami, furcal

setae, and enp3P4 (Lf: Wf, Si: Lfu, Si: Smi, Si: Sme and

L: W, L: Lo, IAS: EAS of enp3P4) were used as input for

analyses. Significant differences were found (Kruskal–

Wallis test; d.f. = 2; P < 0.001) among species for all

indices, with the exception of Lo: L enp3P4, in which

A. einslei showed significant differences from the two other

species, and IAS: W enp3P4 and L: W enp3P4, in which

A. trajani is significantly different from two other species.

The principal component analysis (PCA) of selected

morphometric indices depicted three clearly defined

groups (A, B, and C) corresponding to species recently

described by Mirabdullayev & Defaye (2002, 2004)

(Fig. 2). The groups form a gradient along the first axis,

strongly correlated to several morphometric indices (Si:

Se, Si: Lfu, Si: Sme, Si: Smi, IAS: EAS, IAS: L enp3P4,

and IAS: W enp3P4). Three first axes explain 58.7%,

14.1%, and 10.3% of variability. Cluster A individuals

differ from the two other clusters in several self-correlated

characteristics (furcal setae indices and IAS: EAS). Individ-

uals in cluster B markedly differ from other Acanthocyclops

species in the site of lateral spine insertion in enp3P4, i.e.

A. einslei has the site of insertion nearer the apical end of

the segment, whereas, in the other two species, this seta ⁄
spine is more proximal, near the centre of the segment.

Cluster C individuals have opposite pattern in apical

spines ratio (IAS: EAS; inner apical spine is always shorter

than outer) compared to cluster A, and also the other

Table 2 Measurements of Acanthocyclops species (adult females).

Acanthocyclops trajani Acanthocyclops einslei Acanthocyclops vernalis

Mean ± SD Min ) max Mean ± SD Min ) max Mean ± SD Min ) max

Lfu: Wfu 4.85 ± 0.45a 3.68–5.61 5.18 ± 0.57a 4.07–6.20 4.91 ± 0.84a 3.41–6.75

Si: Lfu 0.93 ± 0.11a 0.61–1.14 0.75 ± 0.07b 0.56–0.98 0.62 ± 0.08c 0.44–0.81

Si: Smi 0.25 ± 0.02a 0.19–0.30 0.19 ± 0.02b 0.15–0.23 0.17 ± 0.02c 0.12–0.23

Si: Sme 0.36 ± 0.03a 0.26–0.42 0.28 ± 0.02b 0.22–0.32 0.24 ± 0.03c 0.18–0.30

Si: Se 1.81 ± 0.18a 1.40–2.17 1.67 ± 0.15b 1.34–2.25 1.41 ± 0.17c 0.95–1.89

L: W enp3 P4 2.72 ± 0.29a 2.28–3.60 2.50 ± 0.22b 2.19–3.08 2.41 ± 0.38b 1.87–3.42

Lo: L enp3 P4 0.61 ± 0.02a 0.58–0.66 0.76 ± 0.03b 0.62–0.81 0.61 ± 0.03a 0.53–0.70

IAS: EAS 1.18 ± 0.09a 1.00–1.50 1.03 ± 0.04b 0.95–1.14 0.86 ± 0.06c 0.71–0.99

IAS: L enp3 P4 0.87 ± 0.07a 0.67–1.09 0.7 ± 0.07b 0.56–0.90 0.61 ± 0.07c 0.48–0.81

IAS: W enp3 P4 2.37 ± 0.32a 1.79–3.19 1.75 ± 0.21b 1.41–2.12 1.48 ± 0.30b 0.98–2.00

N 89 39 51

N, number of analysed individuals; values with identical superscripts within a lines did not differ significantly (P < 0.001, K–W test).

Acanthocyclops morphology and molecular traits d M. Bláha et al.
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traits show the lowest values in comparison with clusters

A and B (except Lfu: Wfu), i.e. a clear tendency of

decreasing ratios from A. trajani (cluster A) to A. vernalis

(cluster C), with A. einslei (cluster B) showing mid-range

values, was observed (Table 2).

Discussion
Genetic differentiation among Acanthocyclops trajani and

Acanthocyclops einslei: is there an agreement between

morphological and genetic data?

The current taxonomic classification in European popula-

tions of A. trajani and A. einslei, which is based on

morphology according to Mirabdullayev & Defaye (2002,

2004) is confirmed here by the DNA sequence analysis of

the mitochondrial 12S rRNA gene fragment. However,

discrimination of Acanthocyclops species based on adult

morphology is confounded by an apparent phenotypic

plasticity of many traits. Therefore, to overcome these

challenges to morphological analysis, this study focused on

characteristics of the distal endopodite of the fourth swim-

ming leg (enp3P4), proposed by Mirabdullayev & Defaye

(2002, 2004) to be most useful as an identification marker

in Acanthocyclops taxonomy. By applying relative size of

body parts, we eliminated the effect of body size, deter-

mined mainly by environmental factors which can have an

important influence on intraspecific morphological vari-

ability among populations (Dodson et al. 2003).

Based on PCA analysis, all specimens were clearly

assigned to the clusters which correspond to species

recently described by Mirabdullayev & Defaye (2002,

2004). Our results indicate that the site of lateral seta

insertion (Lo: L enp3P4) unambiguously differentiates A.

einslei from other Acanthocyclops species, and the ratio of

the two apical spines in enp3P4 (IAS: EAS) differentiates

A. trajani from A. vernalis (Table 2). Another useful trait

(not used in our analyses) discriminating A. vernalis from

A. trajani and A. einslei is shape of genital double-seg-

ment. In A. trajani and A. einslei is broadly rounded in

its anterior part whereas in A. vernalis extended into

‘blunt lobe’ on either side as reported also by Kiefer &

Fryer (1978) and Dodson (1994). In addition, PCA based

on morphometric indices identified three distinct groups in

the analysed samples (A, B, and C; Fig. 2), with the first

three components accounting for 83.1% of the total vari-

ance. The first principal component explains 58.7% of

the total variance and serves to distinguish the three spe-

cies examined.

The 12S rRNA sequences in both species studied dif-

fered at least 20% between two mitochondrial lineages

(A, B). The degree of intraspecific diversity observed for

A. trajani (3.3%) and A. einslei (2.5%) is similar to that of

Lepidurus articus [0.3–3.4% (King & Hanner 1998)] and

Daphnia species [0.5–2.0% (Petrusek et al. 2007; Thielsch

et al. 2009)]. However, on a broader scale, populations of

D. pulex widely geographically separated were shown to be

more divergent (7.2%; Mergeay et al. 2005). Molecular

variance in A. trajani and A. einslei approached the mini-

mum interspecific distances reported for other crustacean

taxa (5.6–19.4%) (e.g. Petrusek et al. 2004, 2008; Parmak-

elis et al. 2008). Thus the observed sequence differences

are clearly within the range of interspecific differences,

while the sequence differences within lineages A (3.3%)

and B (2.5%) were in the range of intraspecific variation.

Moreover, the sequence divergence (20%) between

A. trajani and A. einslei might arguably be substantial

enough to indicate divergence into two biological species.

Determining whether the lineages of the A. vernalis

morphotype identified in this work represent full species

or intraspecific units will require additional work that

considers mating compatibility, gene flow at nuclear loci,

and ecological and physiological divergence.

The majority of analysed A. trajani and A. einslei indi-

viduals represented a single haplotype which exhibited

almost no spatial structure and high mitochondrial female

gene flow. In contrast, individuals of the A. vernalis clade

Fig. 2 Principal component analysis (PCA) populations’ clustering

of Acanthocyclops species based on the morphological characteristic

(indices). Particular morphometric indices (details in text) are

indicated by arrows. —A. t1–t9: populations of Acanthocyclops
trajani (Tcz2, Tcz3, Tcz4, Tcz5, Tcz6, Tcz9, Tcz10, Tcz11 and

Tgr1, respectively). —B. e1–e6: populations of Acanthocyclops einslei
(Ecz1, Ecz2, Ecz3, Ecz4, Ecz6 and Ecz7, respectively). —C. v1–

v8: populations of Acanthocyclops vernalis (Vcz2, Vcz3, Vcz4, Vcz5,
Vcz7, Vbu1, Vmn1 and Vsu1, respectively).
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C exhibited specific spatial structure due to isolation of

habitat, represented here mostly by glacial lakes (Table 1),

although results based solely on a mitochondrial marker in

a small number of analysed individuals should be inter-

preted with caution. From the present distribution, and as

the dispersal abilities and reproductive strategies of both

species are poorly understood, further sampling and

molecular markers of higher resolution are needed for

more detailed phylogeographic information.

Cross-comparison with Grishanin et al. (2005) lineages

To assign our samples and those of Grishanin et al.

(2005), we compared European and American specimens

belonging to the A. vernalis complex. According to the

morphological description of Dodson et al. (2003) who

used the same populations as Grishanin et al. (2005), we

expected the designation of either A. trajani or A. vernalis

in the Grishanin’s study although they called them sim-

ply A. vernalis complex. The data from nuclear 18S

rDNA phylogeny were in accordance with mitochondrial

phylogeny of the A. vernalis morphotype clade C and D;

however, only a limited number of sequences from Pale-

arctic specimens were used. Dissimilarity of the Swiss

specimen sequence (Vsu1), apparent from mitochondrial

phylogeny, was documented here by formation of a

subclade including two other genetically distant Nearctic

populations (PA26, S102) (Fig. 2S). Dissimilarity of

these specimens was reinforced by reproductive isolation

apparent from crossbreeding experiments carried out

by Grishanin et al. (2006), indicating species status dif-

ferent from other populations in A. vernalis morphotype

clades.

A paleobiogeographic scenario of Acanthocyclops evolution

in Europe

Divergence time estimates indicated that divergences

among clades A–D took place 10–15 MYA. This may con-

cur with the theory that Pleistocene glaciations provided

increased opportunities for divergence of species (e.g.

Caudill & Bucklin 2004; Mathews et al. 2008). More likely

Miocene glaciations, playing an important role in the

divergence of several freshwater species such as crayfish

(Trontelj et al. 2005), isopod (Verovnik et al. 2005), and

copepods (Rocha-Olivares et al. 2001; Thum & Harrison

2009) played a substantial role in the initial divergence of

Acanthocyclops species. The last ice age most likely formed

the current distribution of many species (e.g. Hewitt

2004). More precise calibration of molecular clocks is

needed, based on analyses either of closer relatives or con-

generic species. Without fossil calibration of molecular

clocks, however, it is difficult to estimate precise time of

species origin.

Is there an additional sibling species of Acanthocyclops

vernalis in continental Europe?

The specimens morphologically determined as A. vernalis

showed higher genetic diversity than previously described

species. Moreover, on the bases of several lines of evidence,

the phylogenetic tree based on the 12S rRNA gene frag-

ment revealed the possible existence of two cryptic species

complexes among the individuals identified as A. vernalis

(Fig. 1A; clades C and D). The two mtDNA lineages in

the A. vernalis morphotype did not group together in the

phylogenetic analysis. The genetic divergences among

these lineages do not overlap with those within the clades.

In addition, each of the detected lineages contained two

clades with high bootstrap support for both mitochondrial

lineages (Fig. 1A). The level of sequence divergence

between lineages C and D was at least 20%. This implies

that: (i) the two lineages represent different species and (ii)

the two species might not be sister taxa.

Additionally, the origin of populations from clade D is

inter-connected water bodies such as ponds, pools, or

rivers. On the other hand, the individuals in lineage C

were found in isolated sites such as glacial lakes in

Switzerland and Bulgaria (Table 1). The persistence of

morphological uniformity disguising genetic divergence in

Palearctic populations is most likely similar to that in

Nearctic, North American specimens, in which Dodson

et al. (2003) and Grishanin et al. (2005) claimed the exis-

tence of several cryptic lineages, based on reproductive

isolation and different chromosome numbers. Yang et al.

(2009) reported the chromosome number in A. vernalis, A.

einslei, and A. trajani; however, their samples of A. vernalis

from the vicinity of Oldenburg (Germany) did not include

a sufficient number of populations to reflect possible

diversity in chromosome numbers. We could presume

existence of populations with different chromosome num-

bers, similar to North American populations within the A.

vernalis species complex as reported by Grishanin et al.

(2005). Generally speaking, the arguments mentioned

above are commonly used as evidence of independent evo-

lutionary history and specific status of lineages (Avise &

Ball 1990).

Conclusions
In addition to morphological data, the analysis of mito-

chondrial DNA is a useful tool in distinguishing species,

but neither alone can be guaranteed to identify all species.

Current evidence shows that species that diverged several

million years ago can closely resemble one another in

morphology. Clear genetic differences among cryptic

species allow species identification and, hence, the separa-

tion of intraspecific from interspecific morphological varia-

tion. In the present study, mitochondrial phylogenies and
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morphological analysis of European populations of A. tra-
jani and A. einslei were concordant and corroborated the

existence of two distinct species. On the other hand,

mtDNA sequences revealed hidden diversity among

European populations of A. vernalis, which together with

high sequence divergence suggests new cryptic species

complexes among individuals designated as A. vernalis.

Understanding whether the new cryptic species complexes

identified in this work represent full species or intraspe-

cific units will require further detailed study of species

morphology and determination of morphological indices

appropriate for species identification.
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GENERAL DISCUSSION

Naturally, copepod species determination is still based on morphology, applying diff erent methods 

of analyses, from simple description to advanced statistical methods. Moreover, species determination 

is based on morphology of adult stages, mainly females however developmental stages prevail 

in environment through the year. However, advanced methods are highly desirable for analyses of 

morphologically complicated species complex as Acanthocyclops vernalis-robustus defi nitely is 

(Dodson et al., 2003; Bláha et al., 2010).

In the present thesis the precise morphological description of copepodid stages was realized. The 

morphological analyses of copepodid stages of A. trajani and A. einslei showed that copepodid 

morphology in the analysed species is remarkably similar overall and shows an identical pattern in 

articulation and armature of appendages and antennules. However, visible diff erences in enp3 P4 

and antennal armature were found in the later stage copepodids. These diff erences correspond with 

morphology of adults, but due to high morphological plasticity it’s diffi  cult to determine them.  But 

based on diff erences in enp3 P4, the proper determination is still possible. 

The general morphological pattern of copepodid swimming leg development is in accordance with 

the common pattern exhibited by majority of cyclopoid copepods genera (Ferrari, 1988). The sexual 

dimorphism illustrated in this study is apparent from the same stage in size, armature of antennula, 

number of abdominal segments, and shape of the fi rst segment. Although the morphology of 

copepodid phases of A. trajani has been partially described by Caramujo & Boavida (1998) and by 

Turki et al. (2002), in both studies the description was done under the synonym of A. robustus. The 

diff erences between present study and Turki’s study may have been caused by damages of setae during 

handling, since sites of missing seta insertion are recognizable. Additional diff erences were also found 

in antennulary articulation and armature, especially in male C5. On the other hand, the descriptions 

published by Caramujo & Boavida (1998) are in good agreement with present study.

The discrimination of later Acanthocyclops copepodid stages from other common pond or lake 

planktonic copepodids, as well as assignment of concrete species to correct genus, is feasible as implying 

by other authors (e.g. Einslei, 1989; Czaika, 1982; Alekseev, 2000). Additionally, the short key provided 

in this study could be a helpful tool for basic ecological studies of zooplankton communities that is not 

dependent on adult presence and will deepen knowledge of relationships among copepod species 

during their development. Discrimination of Acanthocyclops species based on adult morphology is still 

confounded because of an apparent phenotypic plasticity of many traits. Therefore, in the study Bláha 

et al. (2010) we focused on characteristics of the distal endopodite of the fourth swimming leg (enp3 

P4), proposed by Mirabdullayev and Defaye (2002, 2004) which seems to be most useful as an proper 

identifi cation marker in Acanthocyclops taxonomy. Moreover these characteristics were for a long 

time neglected. So far, copepodologists focused mainly on count of setae or spines in exopodites or 

endopodites (Dodson, 1994; Dodson et al., 2003). In the study Bláha et al. (2010) the relative size of body 

parts was applied to eliminate the eff ect of body size, which is mainly infl uenced by environmental 

factors with remarkable consequences on intraspecifi c morphological variability among populations 

(Coker, 1932; Dodson et al., 2003). To test the independence of relative length (indices) to body size we 

have made regression analysis of indices to body length and analysis of simple length traits to body 

length (not shown in our study). Although we cannot say that indices are fully independent on body 

length, by using this relative size of body parts the infl uence of body size is markedly eliminated.

Because of it in the study Bláha et al. (2010) the combination of morphological and molecular markers 

was used to clarify whether the the phenotypic subdivision and morphological variability is related to 

genetic divergence. The data set obtained from the measurement of the fourth swimming leg (enp3 

P4) were statistically processed using partial principal component analysis (pPCA). The pPCA analysis 
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was realised on data set gathered from 179 individuals that represent specimens from 22 European 

populations of three copepod species as follow: A. trajani, A. einslei and A. vernalis.  The pPCA depicted 

the all specimens into three distinct clusters corresponding with the taxonomic status of the species 

analysed. In addition, pPCA analysis showed that the most species specifi c distinguishing characteristics 

(indices) are as followed: site of lateral seta insertion (Lo:L enp3 P4) unambiguously diff erentiates A. 
einslei from other Acanthocyclops species, and the ratio of the two apical spines in enp3 P4 (IAS:EAS) 

diff erentiates A. trajani from A. vernalis. Another useful trait discriminating A. vernalis from A. trajani 
and A. einslei is shape of genital double-segment. In A. trajani and A. einslei is broadly rounded in its 

anterior part whereas in A. vernalis extended into “blunt lobe” on either side as reported also by Kiefer 

and Fryer (1978) and Dodson (1994).

Analysis of mitochondrial 12S rRNA was fi rstly used for detection of phylogenetic relationships 

among analysed species especially cyclopoid copepod in general (Bláha et al., 2010). Other commonly 

used mitochondrial genes (16S rRNA, COI) however didn’t provide suffi  cient results, that could be 

useful for population studies in calanoid copepods (Bucklin et al., 1999, 2003; Lee, 2000; Machida et 

al., 2004; Thums and Harrison, 2009), and other crustaceans (Adamowicz et al., 2008; Seidel et al., 2009; 

Filipová et al., 2010). 

Taken together, the  the taxonomy status of A. trajani and A. einslei was also supported by sequence 

analysis of mitochondrial DNA (mtDNA), where subsequent construction of phylogenetic trees using 

Bayesian Inference (BI) clearly depicted two major phylogenetic clades corresponding with the 

taxonomic status of both species. On the other hand the specimens morphologically determined as 

A. vernalis, were divided into two deeply divergent clades, based on mtDNA sequence divergences. 

The degree of interspecies sequence diff erences represent 20% between A. trajani and A. einslei. 
Moreover, the degree of intraspecifi c diversity observed for both species (3.3% and 2.5%, respectively) 

is similar to that of other crustaceans (King and Hanner, 1998; Petrusek et al., 2007; Thielsch et al., 

2009). Molecular variance between A. trajani and A. einslei approached the minimum interspecifi c 

distances reported for other crustacean taxa (5.6–19.4%) (e.g. Petrusek et al., 2004; Parmakelis et al., 

2008; Petrusek et al., 2008). Thus the observed sequence diff erences are clearly within the range of 

interspecifi c diff erences, while the sequence diff erences within lineages A (3.3%) and B (2.5%) were in 

the range of intraspecifi c variation. Moreover, the sequence divergence (20%) between A. trajani and 

A. einslei might arguably be substantial enough to indicate divergence into two biological species. 

Moreover, the sequence divergence (26%) between two clades in case of specimens morphologicaly 

determined as a A. vernalis indicated the existence of another species that may not be a sister taxon 

of A. vernalis s.s. Determining whether the lineages of the A. vernalis morphotype identifi ed in this 

work represent full species or intraspecifi c units will require additional work that considers mating 

compatibility, gene fl ow at nuclear loci, and ecological and physiological divergence. 

It is worth to be mentioned that, mating compatibility was also used to solve Acanthocyclops species 

complex several times (Lowndes, 1928; Price, 1958; Smith, 1981; Dodson et al., 2003; Grishanin et al., 

2006). Because of it in the study Bláha et al. (2010) we have also compared partial sequence of one 

nuclear gene (18S rDNA) gathered from European representatives of A. trajani and A. vernalis with those 

sequences of 18S rDNA provided by Grishanin et al. (2005). Interestingly, our analysis clearly assigned 

Grishanins’ sequences to European ones. In addition, Grishanin et al. (2006) reported one successful 

mating between populations S102 and S115, i.e. populations assigned by Bláha et al. (2010) to diff erent 

species (A. vernalis, A. trajani, respectively) based on nuclear rDNA. Moreover, these populations have 

even diff erent chromosome number, but still survive in laboratory culture for sixty generations. This 

is probably the only one recorded case of interspecifi c hybridization supported by rDNA sequences 

and chromosome number, although Smith (1981) reported also successful mating between “limnetica” 

female and “brevispinosus” male producing fertile F1, when inbred having “limnetica” phenotype. 
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Nevertheless, without precise determination of analysed species, results are diffi  cult to interpret.

The situation in America, where took place all studies mentioned above, is diff erent from European 

simply because of misidentifi cation and confusion of several Acanthocyclops species (Smith, 1981; 

Dodson, 1994; Dodson et al., 2003; Grishanin et al., 2005, 2006) or due to existing reproductively 

incompatible populations representing really diff erent species, undergoing morphological stasis, and 

possible to reveal only by molecular methods with proper markers. It is probably only question of 

time to reveal similar situation in Europe, depending on analyses of suffi  cient amount of populations 

and specimens such as apparent from study of Bláha et al. (2010) revealed new cryptic lineage within 

A. vernalis.

CONCLUSIONS

We can conclude that characteristics of the distal endopodite of the fourth swimming leg seems to 

be most useful as an proper identifi cation marker in Acanthocyclops taxonomy, useful for distinguishing 

of older copepodid stages as well. Based on molecular markers the taxonomic status of two recently 

described species (A. trajani and A. einslei) was corroborated, however showed hidden diversity within 

species determined as A. vernalis and so far undistinguishable from each other morphologicaly.

The situation within Acanthocyclops vernalis-robustus species complex was for a long time full of 

dark corners, which time to time revealed diffi  cultly its secrets. Luckily, the eff ort was not useless and 

copepodologists such as S.I. Dodson, I.M. Mirabdullayev and D. Defaye revealed new species and 

improve morphological discrimination within such a complicated genus. Additionally, with using 

molecular and cytogenetic methods, the knowledge about particular species was further deepened 

mainly due to A.K. Grishanin. Author of this thesis believes that also his contribution into Acanthocyclops 

problems was not useless and brings interesting remarks, which can provoke for further work within 

such a fascinating animals group.
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ENGLISH SUMMARY

Molecular and morphological aspects within Acanthocyclops 
Kiefer, 1927 

Martin Bláha

This study used basic description as well as advanced methods in morphological analyses of 

newly described species of copepod genus Acanthocyclops Kiefer, 1927. Together with advanced 

morphological methods, molecular study was consider as a very useful tool for analysing specimens 

from diff erent populations of three European Acanthocyclops species, namely A. trajani, A. einslei and 

A. vernalis.

The copepodid phases and adults of Acanthocyclops trajani and Acanthocyclops einslei were studied 

to record their distinguishing characteristics. Detailed morphological examination showed that 

copepodids of both species were very similar, and showed an identical pattern of articulation and 

armature of appendages and antennules. Diff erences in the distal endopodid of the fourth swimming 

leg as well as in antennal armature were found in later stage copepodids of both species. A. trajani had a 

higher ratio of apical spines on the distal endopodid of the fourth swimming leg compared to A. einslei, 
as well as a higher segment length/width ratio. Based on morphological descriptions of the copepodids 

of A. trajani and A. einslei, reported in this study, and also on published descriptions of other common 

pond and lake copepod species (i.e. Megacyclops, Cyclops, Mesocyclops, Macrocyclops), discrimination 

by genus of later stage copepodids as feasible and may serves as a tool for basic ecological studies of 

zooplankton communities that is not dependent on the presence of adult specimens.

Morphology in andults of Acanthocyclops species is confounded by an apparent morphological 

plasticity and in general, morphological traits are highly variable, and morphology is too constrained 

to give complete information of phylogenetic relationships. Our study combined morphological and 

molecular techniques to investigate the taxonomic and phylogenetic relationships of three species of 

Acanthocyclops (Acanthocyclops trajani, Acanthocyclops einslei and Acanthocyclops vernalis) inhabiting 

continental Europe. Morphological indices subjected to partial principal component analysis (pPCA) 

separated sample populations into three distinct clusters corresponding with the taxonomic status of 

the species analysed. In addition, the taxonomy status of A. trajani and A. einslei was in agreement with 

molecular data; however, the intraspecifi c variation in sequences of 12S rRNA was lower in contrast to 

specimens morphologically determined as A. vernalis, which were divided into two deeply divergent 

clades, based on mtDNA sequence divergences. Moreover, high sequence divergence (26%) between 

these clades indicated the existence of another species that may not be a sister taxon of A. vernalis 

s.s. 

Results in our study point to the need for further taxonomic work on Acanthocyclops, considering 

detailed morphology of sister species of A. vernalis as well as extension of molecular analyses to other 

not only European Acanthocyclops species.
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CZECH SUMMARY

Molekulární a morfologické aspekty v rámci rodu Acanthocyclops 
Kiefer, 1927 

Martin Bláha

Předkládaná práce využívá ke studiu buchanek rodu Acanthocyclops Kiefer, 1927 základní morfologické 

metody popisu, ale také pokročilé metody morfologické analýzy. Ty, společně s molekulárními 

metodami představují velmi užitečné nástroje při analýze jedinců z rozdílných populací tří evropských 

druhů buchanek rodu Acanthocyclops, jmenovitě A. trajani, A. einslei and A. vernalis.

Morfologický popis kopepoditových stádií a dospělců druhů Acanthocyclops trajani a Acanthocyclops 
einslei byl realizován za účelem nalézt druhově specifi cké rozdíly u vývojových stádií. Detailní 

morfologická analýza ukázala, že morfologie kopepoditů obou dvou druhů je velmi podobná. I přesto 

byly nalezeny rozdíly u starších kopepoditů, a to v otrnění a obrvení antenuly, stejně tak i v morfologii 

distálního endopoditu čtvrté plovací nožky. Druh A. trajani vykazuje vyšší poměr apikálních trnů na 

tomto článku, stejně tak i poměr šířky a délky je u tohoto druhu vyšší než u druhu A. einslei. Na základě 

prezentovaného popisu kopepoditových stádií obou druhů, a také na základě již publikovaných dat 

o morfologii vývojových stádií dalších druhů buchanek (rody Megacyclops, Cyclops, Mesocyclops, 

Macrocyclops), je možné od sebe starší kopepoditová stádia odlišit. To by mělo napomoci při 

ekologických studiích planktonních společenstev, které nemusí být odkázány pouze na přítomnost 

dospělých stádií, tedy stádií na které jsou všechny determinační klíče orientovány.

Morfologie dospělců buchanek v rámci rodu Acanthocyclops je zastřena značnou morfologickou 

plasticitou a variabilitou jednotlivých znaků. Tím pádem je na základě morfologie složité usuzovat 

na phylogenetické vztahy mezi jednotlivými druhy. Naše studie kombinovala morfologické a 

molekulární metody za účelem popsání taxonomických a fylogenetických vztahů tří druhů v rámci 

rodu, druhů Acanthocyclops trajani, A. einslei a A. vernalis obývajích evropské kontinentální vody. 

Vybrané morfologické indexy byly analyzovány pomocí diskriminační analýzy (pPCA), která rozdělila 

analyzované populace tří jmenovaných druhů do tří klastrů. Tyto klastry odpovídaly jejich současnému 

taxonomickému statusu. Navíc, taxonomický status odpovídal také výstupům z molekulární analýzy 

mitochondriálního genu pro ribozomální subjednotku 12S rRNA. Variabilita sekvencí byla u druhů A. 
trajani  a A. einslei výrazně nižší než u druhu určeného jako A. vernalis. Populace tohoto druhu byly 

na základě molekulární analýzy rozděleny do dvou kládů, které se od sebe lišili ve 26 % analyzovaných 

sekvencí. Takto vysoká divergence naznačuje existenci dalšího druhu, který by nemusel být dokonce 

ani sesterským druhem druhu A. vernalis.

Výsledky předkládané v této práci naznačují potřebu další intenzivní taxonomické práce v rámci 

tohoto rodu, zahrnující jak detailní morfologické analýzy nově zjištěného sesterského druhu A. vernalis, 

tak také rozšíření molekulárních analýz na další druhy rodu Acanthocyclops.
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