JIHOČESKÁ UNIVERZITA

V Českých Budějovicích

Zdravotně sociální fakulta Katedra zdravotnické fyziky a biofyziky

BAKALÁŘSKÁ PRÁCE

Analýza organických kyselin novým postupem extrakční derivatizace v krevní plasmě a séru technikou GC/MS.

Studijní obor: Autor: Vedoucí práce: Biofyzika a zdravotnická technika Lucie Jahodová Ing. Helena Zahradníčková, Ph. D. Prim. MUDr. Miroslav Verner

České Budějovice

Prohlášení

Prohlašuji, že svoji bakalářskou práci jsem vypracovala samostatně pouze s použitím pramenů a literatury uvedených v seznamu citované literatury.

Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své bakalářské práce, a to v nezkrácené podobě elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách.

V Českých Budějovicích, 3. září 2007

.....

Podpis

Poděkování

Ráda bych tímto poděkovala vedoucí bakalářské práce paní Ing. Zahradníčkové za odborné konzultace, připomínky, projevený zájem a čas, které mi posloužily k vypracování bakalářské práce. Dále bych chtěla poděkovat panu Prim. MUDr. Miroslavu Vernerovi a všem pracovníkům Laboratoře analytické biochemie Entomologického ústavu AV ČR v Českých Budějovicích vedené RNDr. Petrem Šimkem, CSc., za umožnění provedení výzkumu a za spolupráci při realizaci výzkumu.

Abstract

The theme of the bachelor's thesis was "The Analysis of Organic Acids by New Extractive Derivatization Process in Blood Plasma and Serum Using the GC/MS Technique".

The objective of the thesis was to develop a method for fast determination of organic acids by a new process of extractive derivatization, to identify and determine organic acids in body fluids, to compare their abundance and to evaluate the possibility of implementation of this method in clinical diagnostics.

Body fluids contain hundreds of organic acids, which co-create a clinical picture of a patient's health condition. The current research focuses on implementation of methods providing for comprehensive, metabolism-based analysis of these metabolites important from the point of view of diagnostics.

Nowadays, an analyst can select from a wide range of methods and several effective analytical and separation techniques for separation, determination and identification of organic acids in complex biological matrices.

In the introductory, theoretical part of the bachelor's thesis, the knowledge of properties of organic acids and possibilities of their determination are summarized.

In the practical part, the method of fast determination of organic acids in body fluids by the GC/MS techniques was developed. By means of this technique, it is possible to analyze large quantities of organic acids in minimum volume of body fluid.

Derivatization of a set of several tens of organic acids with ethyl chloroformate in aqueous medium was carried out. The reaction proceeds very fast and at laboratory temperature. The applicability of the developed method was verified through analysis of organic acids in biological samples. In samples of blood serum and plasma, tens of organic acids were identified by means of the above-mentioned method, retention data and EI mass spectra.

Experiments performed for the purpose of this thesis proved that derivatization with chloroformates in aqueous medium is a relatively simple, fast and promising method for analysis of organic acids.

Follow-up experimental research is necessary to make the methodology applicable in clinical diagnostics and to define advantages and limitations of this new methodological procedure.

Obsah

1.	ÚVOĽ)	7			
2.	SOUČASNÝ STAV DANÉ PROBLEMATIKY8					
	2.1.	Biochemie krve	8			
	2.2.	Organické kyseliny (karboxylové kyseliny)	9			
	2.2.	1. Vlastnosti	9			
	2.2.	2. Acidita kyselin	9			
	2.2.	3. Přeměny <i>in vivo</i>	0			
	2.2.	4. Aminokyseliny10	0			
	2.2.	5. Mastné kyseliny	3			
	2.2.	6. Ketokyseliny (oxokyseliny) a hydroxykyseliny 14	4			
	2.3.	Vývoj analytických separací14	4			
	2.4.	Metody stanovení organických kyselin1	5			
	2.4.	1. Elektromigrační (elektroforetické) metody 16	5			
	2.4.	2. Chromatografické metody 17	7			
	2.5.	Princip a instrumentální uspořádání GC	2			
	2.5.	1. Princip GC	2			
	2.5.	2. Instrumentální uspořádání GC22	2			
3.	CÍL PI	RÁCE	1			
4.	PŘED	POKLÁDANÉ HYPOTÉZY	1			
5.	POPIS	METODIKY	2			
	5.1.	Použité chemikálie	2			
	5.2.	Použitý laboratorní materiál	2			
	5.3.	Standardní roztoky	2			
	5.4.	Postup pro stanovení standardů, derivatizace s ECF	5			
	5.5.	Biologický materiál	5			
	5.6.	Postup pro stanovení séra/ plasmy	5			
	5.7.	Postup pro přípravu slepé zkoušky	7			
	5.8.	Použitá metoda pro stanovení organických kyselin	7			
	5.9.	Podmínky analýzy	8			
6.	VÝSL	EDKY A DISKUSE	9			
	6.1.	Výsledky	9			
	6.1.	1. Analýza ECF derivátů organických kyselin ve standardních směsích 39	9			

	6.1.2.	Analýza organických kyselin v biologickém materiálu	
	6.1.3.	Slepá zkouška	54
	6.2. Dis	skuse	56
7.	ZÁVĚR		57
8.	SEZNAM	POUŽITÝCH ZKRATEK	
9.	SEZNAM	POUŽITÉ LITERATURY	59
10.	KLÍČOVÁ	SLOVA	
11.	PŘÍLOHY		63
	11.1. Pří	Joha 1	64
	11.1.1.	Hmotnostní spektra aminokyselin	64
	11.1.2.	Hmotnostní spektra mastných kyselin	75
	11.1.3.	Hmotnostní spektra hydroxy- a keto- kyselin	79
	11.1.4.	Hmotnostní spektra dikarboxylových kyselin	
	11.2. Pří	loha 2	86
	11.2.1.	Struktury AA a ECF derivátů AA	86
	11.2.2.	Struktury FA a ECF derivátů FA	90
	11.2.3.	Struktury OA a ECF derivátů OA	
	11.2.4.	Struktury diCA a ECF derivátů diCA	

1. ÚVOD

Analýza organických kyselin a to zejména aminokyselin patří mezi nejvýznamnější a zároveň nejobtížnější úkoly analytické chemie organických látek.

Tělní tekutiny obsahují stovky organických kyselin, které spoluvytvářejí klinický obraz o zdravotním stavu pacienta. Současný výzkum se zaměřuje na zavedení metod umožňujících komplexní, metabolomickou analýzu těchto diagnosticky významných metabolitů.

Pro separaci, stanovení a identifikaci organických kyselin ve složitých biologických matricích se v současné době analytikovi nabízí velký počet metod a několik účinných analytických separačních technik. Jednou z těchto technik je plynová chromatografie s následnou detekcí hmotnostním spektrometrem, kterou jsem použila ve své bakalářské práci. Chromatografická metoda je založena na mnohonásobném rozdělování dělených látek mezi stacionární a mobilní fázi, které jsou navzájem nemísitelné. Po ionizaci analyzovaných látek zaznamenává hmotnostní spektrometr jejich efektivní hmoty, které podávají informace o struktuře analyzované látky.

Cílem této práce je vypracovat metodiku pro stanovení organických kyselin novým postupem extrakční derivatizace, provést identifikaci hlavních složek organických kyselin v modelových vzorcích krevního séra a plasmy a porovnat jejich zastoupení v těchto tělních tekutinách. Použitá metoda derivatizace s ethylchlormravenčany spolu s technikou GC/MS umožňuje identifikaci diagnosticky významných sloučenin a poskytuje celkový přehled o jejich zastoupení v tělních tekutinách, což je významné z hlediska využitelnosti nové metodiky v klinické diagnostice.

2. SOUČASNÝ STAV DANÉ PROBLEMATIKY

2.1. Biochemie krve

Krev cirkuluje v uzavřeném cévním systému a její objem činí 6-8 % tělesné hmotnosti. Skládá se z pevných součástí (bílé a červené krvinky, krevní destičky), které jsou suspendovány v kapalném prostředí, plasmě. Plasma je žlutavá vazká tekutina, která je tvořena z 90 % vody, dále obsahuje nízkomolekulární neelektrolyty, ionty a bílkoviny. Krev má několik funkcí, které lze rozdělit na transportní a obranné.

Hlavní transportní funkce krve jsou:

- 1. Respirace přenos kyslíku z plic do tkání a CO₂ z tkání do plic
- 2. Výživa transport živin ze střeva do jater a z jater do tkání
- 3. Vylučování transport odpadních metabolitů do ledvin a plic
- 4. Transport hormonů do cílových tkání
- 5. Udržování homeostasy (pH, teplo, voda)

Obranné funkce krve

- 1. Obrana proti infekci (cirkulujícími protilátkami, bílými krvinkami)
- 2. Udržování koagulace

(Dylevský, 2000; Dostál, Paulová, Slanina, Táborská, 2005; Murray, Granner, Mayes, Rodwell, 2002).

Ve složení krve se odráží řada biochemických pochodů probíhajících v různých tkáních. Analýzy krve, krevního séra nebo plasmy tvoří nejvýznamnější a nejpočetnější klinicko-biochemická vyšetření. Krev se získává ze žil, tepen nebo kapilár. Pro biochemické analýzy se centrifugací krve získává plasma nebo sérum. Je-li krev odebrána do zkumavky bez přídavku protisrážlivých prostředků, dochází k jejímu sražení a následným odstředěním získáme **sérum**. V séru chybí srážecí faktory a to včetně fibrinogenu, které jsou normálně v plasmě přítomny. Jsou-li před odběrem do zkumavky přidány protisrážlivé prostředky (heparin, citrát sodný nebo Na₂EDTA), ke srážení nedochází a odstředěním se získá **plasma** (Dostál, Paulová, Slanina, Táborská, 2005; Murray, Granner, Mayes, Rodwell, 2002).

2.2. Organické kyseliny (karboxylové kyseliny)

Skupina charakteristická pro karboxylové kyseliny je jednovazná karboxylová skupina –COOH, která formálně představuje kombinaci skupiny hydroxylové s karbonylovou. Přesto ale nemají karboxylové kyseliny vlastnosti alkoholů, ani vlastnosti ketonů (Červinka. 1985; Dostál, Paulová, Slanina, Táborská, 2005).

2.2.1. Vlastnosti

Karboxylová skupina je velmi polární. Výslednou polaritu molekul určuje jak počet karboxylů, tak délka alifatického řetězce. Nejnižší tři alifatické monokarboxylové kyseliny jsou kapaliny, které jsou dobře rozpustné ve vodě. Polaritu molekuly výrazně snižuje dlouhý alifatický řetězec nebo aromatický kruh. Vyšší alifatické (tzv. vyšší mastné) kyseliny jsou olejovité kapaliny v chladu tuhnoucí nebo voskovité tuhé látky. Pokud nejsou kyseliny rozpustné ve vodě, rozpouštějí se v roztocích alkalických hydroxydů (Dostál, Paulová, Slanina, Táborská, 2005).

2.2.2. Acidita kyselin

Ve vodných roztocích karboxylové kyseliny částečně disociují. Rovnováha disociace (Obr. 2. 1) je posunuta doleva.

Obr. 2. 1: Schéma disociace karboxylových kyselin

Téměř všechny karboxylové kyseliny jsou slabé kyseliny a patří mezi slabé elektrolyty. Při rozpouštění ve vodě jsou v roztoku nedisociované molekuly a vzniklé ionty, což je charakterizováno disociační konstantou K_A nebo jejím záporným

dekadickým logaritmem pK_A. U karboxylových kyselin je hodnota pK_A v rozmezí 3,0 - 6,0 (Dostál, Paulová, Slanina, Táborská, 2005).

$$R - COOH \qquad R - COO^{-} + H^{+}$$
$$K_{A} = \frac{\left[R - COO^{-}\right] \cdot \left[H^{+}\right]}{\left[R - COOH\right]} \dots pK_{A} = -\log K_{A}$$

Obr. 2. 2.: Vyjádření disociační konstanty KA a pKA pro slabou kyselinu R-COOH

2.2.3. Přeměny *in vivo*

V metabolických pochodech dochází k přeměnám nasycených karboxylových kyselin na nenasycené a různě substituované kyseliny a naopak. Příkladem je například reakce dikarboxylové kyseliny z citrátového cyklu a následná transaminace oxalacetátu (Dostál, Paulová, Slanina, Táborská, 2005), (Obr. 2. 3).

Obr. 2. 3: Reakce dikarboxylové kyseliny v citrátovém cyklu (Dostál, Paulová, Slanina, Táborská, 2005).

2.2.4. Aminokyseliny

Aminokyseliny (AA) jsou základní stavební kameny, které organismus využívá k tvorbě svých vlastních bílkovin, k získávání energie i k přeměně na jiné biologické sloučeniny. Jsou to substituční deriváty karboxylových kyselin, v jejichž molekulách jsou přítomny aminové skupiny, -NH₂ (Dostál, Paulová, Slanina, Táborská, 2005; Murray, Granner, Mayes, Rodwell, 2002).

Všechny přírodní AA, až na nepatrné výjimky, mají aminovou skupinu vázanou na atomu uhlíku α a většinou patří do řady L. α - uhlík je chirálním centrem, proto jsou AA, s výjimkou glycinu, látky opticky aktivní (Dostál, Paulová, Slanina, Táborská, 2005; Odstrčil, 1995).

AA obsahují dvě funkční skupiny: kyselou skupinu karboxylovou a zásaditou skupinu aminovou. Mají tedy schopnost podle prostředí reagovat jako kyselina nebo jako zásada, takže se chovají jako amfolyty a mají amfoterní vlastnosti. Charakteristickým projevem amfoterního chování je reakce v kyselém i alkalickém prostředí. V kyselém prostředí je potlačena disociace karboxylové skupiny, aminová skupina přijímá proton. Aminokyselina nese kladný náboj a chová se jako zásada. V zásaditém prostředí se aminokyselina chová jako kyselina. Je podpořena disociace karboxylové skupiny, aminová skupina nemůže přijímat proton a aminokyselina potom nese záporný náboj. Jakožto amfolyty vytvářejí AA soli s kyselinami i zásadami a proto jsou dobře rozpustné v polárních rozpouštědlech velmi a špatně v rozpouštědlech nepolárních.

Hodnota pH prostředí, při níž jsou obě skupiny disociovány (molekula se chová jako elektroneutrální), se nazývá izoelektrický bod. V oblasti izoelektrického bodu jsou AA nejméně rozpustné. Vlastnosti, že mají AA elektrický náboj a pohybují se v poli stejnosměrného proudu, se využívá při jejich analýze elektromigračními postupy, jako je například elektroforéza.

Nejvýznamnější reakcí AA je tvorba peptidové vazby (-CO-NH-), při které reagují α-karboxylová skupina jedné aminokyseliny s α-aminovou skupinou druhé za odštěpení molekuly vody (Murray, Granner, Mayes, Rodwell, 2002, Odstrčil, 1995).

Molekuly proteinů jsou tvořeny stovkami až tisíci molekul AA, které mohou být v bílkovinné makromolekule uspořádány různým způsobem. V řetězcích peptidů a bílkovin se pravidelně vyskytuje 20 proteinogenních AA. Některé se mohou několikrát po sobě opakovat, některé jsou obsaženy v řetězci vícekrát, jiné méně často. Pořadí AA v řetězci proteinu je pro každý druh proteinu, pro každý organismus charakteristické a je geneticky řízeno. Proteiny jsou druhově specifické, každý organismus tvoří "své vlastní" proteiny s určitou strukturou. Pořadí AA v řetězci proteinu nazýváme primární strukturou. Na dodržení primární struktury proteinu závisí jeho správná biochemická funkce (Odstrčil, 1995).

Podle typu postranního řetězce a přítomnosti funkčních skupin lze AA rozdělit do několika skupin:

- Aminokyseliny s nesubstituovaným postranním řetězcem: glycin (Gly), alanin (Ala), valin (Val), leucin (Leu), isoleucin (Ile)
- Aminokyseliny s postranním řetězcem obsahujícím hydroxylové (OH) skupiny: serin (Ser) a threonin (Thr)
- Aminokyseliny s postranním řetězcem obsahujícím atom síry: cystein (Cys), methionin (Met)
- Aminokyseliny s postranním řetězcem obsahujícím kyselé skupiny nebo jejich amidy: kyselina asparagová (Asp), asparagin (Asn), kyselina glutamová (Glu), glutamin (Gln)
- 5. Aminokyseliny obsahující bazické skupiny v postranním řetězci: arginin (Arg) a lysin (Lys)
- 6. Aminokyseliny obsahující aromatické jádro: phenylalanin (Phe), tyrosin (Tyr), tryptofan (Trp)
- 7. Heterocyklické aminokyseliny: histidin (His) a prolin (Pro)

(Murray, Granner, Mayes, Rodwell, 2002).

Pro zajištění správných funkcí organismu, pro výstavbu všech tělesných bílkovin, je třeba přijímat všechny potřebné AA, které náš organismus nedokáže vytvořit, v potravě. Jsou pro nás nezbytné, esenciální. Jsou to AA s rozvětveným řetězcem nebo s aromatickým jádrem: Val, Leu, Ile, Try, Lys, Met, Thr, Phe. Cystein není esenciální, ale je potřebný jako zdroj síry (Odstrčil, 1995).

AA se metabolizují enzymaticky řízenými pochody, při kterých se jejich aminoskupina zpracuje na močovinu nebo přenese na ketokyseliny, přičemž z ketokyselin vznikají nové AA. Část aminokyselin se zapojuje do cyklu trikarboxylových kyselin, který zajišťuje energetické zásobování organismu. Nedostatek nebo snížení aktivity některého z enzymů, katalyzujících přeměnu AA, může být příčinou dědičných metabolických poruch aminokyselin (DMP AA). Průvodním jevem těchto poruch je nadměrné hromadění nebo vylučování některého typického metabolitu v krvi, moči a jiném biologickém materiálu, podle nějž je možné DMP AA určit (Čermáková, Štěpánová, 2003).

2.2.5. Mastné kyseliny

Mastné kyseliny (FA) se vyskytují ve všech druzích lipidů. Jsou to organické karboxylové kyseliny s dlouhým uhlíkovým řetězcem. Počet atomů uhlíků v řetězci je většinou sudý. Je to způsobeno tím, že při biosyntéze vznikají mastné kyseliny z dvouuhlíkatých fragmentů.

Podle výskytu jednoduchých a dvojných vazeb můžeme mastné kyseliny dělit na nasycené a nenasycené.

Pro lidský organismus je jediná kyselina esenciální, a to linolová. Organismus ji neumí syntetizovat a je odkázán na její příjem v potravě. Kyselinu linoleovou a arachidonovou organismus tvoří v játrech z kyseliny linolové (Odstrčil, 1995).

Naprostá většina nenasycených mastných kyselin se v přírodě vyskytuje v konfiguraci cis a jejich molekuly jsou v místě dvojné vazby ohnuté o 120°. Zvýšení počtu dvojných vazeb vede k rozmanitému prostorovému uspořádání molekuly. To má velký význam pro uspořádání molekul v membránách a pro polohu, kterou mastné kyseliny zaujímají ve složitějších molekulách fosfolipidů (Murray, Granner, Mayes, Rodwell, 2002).

Nenasycené mastné kyseliny mají význam pro tvorbu fyziologicky účinných látek, tzv. prostaglandinů. Prostaglandiny můžeme považovat za mastné kyseliny, které jsou syntetizovány *in vivo* cyklizací uprostřed uhlíkového řetězce dvacetiuhlíkatých nenasycených mastných kyselin za vzniku cyklopentanového kruhu. Ovlivňují činnost všech druhů žláz, rozšiřují cévy, stimulují hladké svalstvo a brzdí rozpad tuků v tukové tkáni. Účinkem připomínají hormony. Vznikají cyklizací ze dvacetiuhlíkatých nenasycených mastných kyselin (Murray, Granner, Mayes, Rodwell, 2002; Odstrčil 1995).

Fyzikální a fyziologické vlastnosti mastných kyselin jsou ovlivněny délkou řetězce a stupněm nenasycenosti. Body tání MK se sudým počtem uhlíků se zvyšují s délkou řetězce a klesají s přibývajícím počtem dvojných vazeb (Murray, Granner, Mayes, Rodwell, 2002).

13

2.2.6. Ketokyseliny (oxokyseliny) a hydroxykyseliny

Ketokyseliny a hydroxykyseliny jsou substituční deriváty karboxylových kyselin, které mají jeden nebo více atomů vodíku v uhlovodíkovém zbytku kyseliny nahrazen jiným atomem (oxoskupina nebo hydroxyl), (Obr. 2. 4).

Obr. 2. 4: Schéma ketokyseliny a hydroxykyseliny

Do této skupiny látek patří např. kyselina β -hydroxymáselná, acetoctová a aceton, které mají společný metabolický původ a v biochemii se jim říká ketolátky. U zdravých osob se vyskytují v krvi a moči jen v nepatrném množství. Ve zvýšené míře se tvoří, jsou-li buňky nuceny využívat jako hlavní zdroj energie tuky, zejména při nekompenzované cukrovce nebo při dlouhodobém hladovění. V těchto případech se vylučují ketolátky ve značné míře močí a potem a dech je cítit acetonem (Dostál, Paulová, Slanina, Táborská, 2005).

2.3. Vývoj analytických separací

Separace a nejjednodušší separační operace provázející analytickou chemii, jako např. srážení, loužení či destilace, sahají daleko před vznik vědy jako takové, do dob alchymie a primitivní metalurgie. Nicméně i mnohé metody, které jsou analyticky velmi důležité v současnosti, mají poměrně staré kořeny (např. extrakce některých kovů z vodného roztoku do organického rozpouštědla byla objevena již kolem poloviny 19. století). Vývoj separačních metod se začal prudce zrychlovat od druhé poloviny 19. století, spolu s rozvojem vědy a z ní odvozené technologie. Počátkem 20. století objevil M. S. Tswett princip chromatografie, která na své skutečné uplatnění musela počkat několik desítek let, až do doby zásadních objevů A. J. P. Martina a spolupracovníků.

Nejnovější vývoj separačních metod závisel a závisí spíše na obrovském technologickém rozvoji, než na základních teoretických objevech. Dobrým příkladem je například kapalinová chromatografie: její princip pochází od Tswetta a daleko předcházel ostatní typy chromatografie. Moderní vysokoúčinná kapalinová chromatografie pracující za vysokého tlaku však mohla vzniknout teprve tehdy, když byly vyvinuty vysoce účinné a reprodukovatelné, specializované stacionární fáze s malými a uniformními částicemi a veškeré komponenty poměrně náročného experimentálního vybavení, což nastalo až na přelomu šedesátých a sedmdesátých let 20. století.

Moderní vývoj analytických separací probíhá v určitých etapách, např. rozvoj plynové chromatografie v padesátých létech, rozvoj vysokoúčinné kapalinové chromatografie v sedmdesátých létech, rozvoj klasické elektroforézy od pozdních čtyřicátých let, rozvoj kapilární elektroforézy a technik spojených s hmotnostní spektrometrií na přelomu osmdesátých a devadesátých let. V současnosti je k dispozici velmi široká škála separačních metod, přístrojů a potřebných materiálů.

Současná analytická chemie, a tedy i analytická separace, má rozsáhlý arsenál metod a přístupů k řešení problémů. Ovšem nároky na ni neobyčejně vzrůstají. Při stanovování složek velmi složitých směsí velmi podobných látek ve složité matrici často nestačí jedna separační technika, ani velmi výkonná, a proto se spojuje několik technik za sebou, on line, čímž se znásobí potenciál velmi výkonných separací kombinací s výkonnými detekčními technikami. Nejčastěji se setkáváme se spojením kolonové separace s hmotnostní spektrometrií (MS) (Štulík, et al. 2004).

2.4. Metody stanovení organických kyselin

Je navrženo mnoho účinných analytických separačních metod ke stanovení organických kyselin, které lze separovat a identifikovat ve složitých biologických matricích.

Pro stanovení organických kyselin v biologických tekutinách je nezbytná jejich izolace z biologické matrice nejčastěji extrakcí tuhou fází (SPE-solid phase extraction) nebo je možná extrakce kapalina-kapalina (LLE-liquid-liquid extraction). Technika SPE má řadu výhod, mezi které patří především rychlost, selektivita, citlivost, dobrá

opakovatelnost, možnost automatizace, snadné spojení s řadou analytických metod a také finanční dostupnost (Štulík et al., 2004).

2.4.1. Elektromigrační (elektroforetické) metody

Elektroforéza je fyzikálně chemická metoda, umožňující kvalitativní i kvantitativní dělení látek na základě jejich rozdílné pohyblivosti v elektrickém poli. Je-li směs stanovovaných látek, které mají charakter iontů nebo amfolytů, vystavena v určitém prostředí působení elektrického pole, dochází k elektroforetické migraci. Touto migrací se rozumí pohyb iontů v elektrickém poli vlivem elektrostatického přitahování elektrického náboje k opačně nabité elektrodě (Obr. 2. 5). Pohyblivost iontů závisí na velikosti a tvaru molekul, na prostředí a na velikosti elektrického pole. Velikost náboje molekuly nebo částice ovlivňuje pH, stupeň ionizace a iontová síla prostředí (Němec, 1988; Štulík et al., 2004).

Obr. 2. 5: Elektrostatické přitahování a následná elektroforetická migrace kationu ke katodě konstantní elektroforetickou rychlostí v_{ef}. (Štulík et al., 2004)

Do skupiny elektromigračních metod patří zejména kapilární elektroforéza (CA), která vyniká především malou spotřebou vzorku a činidel potřebných pro separaci, velkou účinností separace, velkou rychlostí analýzy a krátkou dobou potřebnou na optimalizaci separačních podmínek. K hlavním nevýhodám této separační techniky patří nižší citlivost a menší reprodukovatelnost.

Metodu CE lze použít pro separace a stanovení organických látek, jejichž molekuly mohou nést v důsledku disociace záporný náboj (např. karboxylové kyseliny) nebo kladný náboj (např. aminy a aminokyseliny) (Štulík et al., 2004).

CE se používá ve spojení s elektrochemickou a UV detekcí. Lze také použít fluorescenční detektor využívající laserem indukovanou fluorescenci (LIF), který se hodí jako jeden z nejcitlivějších pro fluoreskující analyty. S použitím LIF detekce je možné separovat volné AA v lidské plazmě během 70 min, díky tomu je možná rychlá diagnóza při dědičných metabolických poruchách AA, jako jsou například fenylketonurie, tyrosinemie, citrulinemie (Boulat et al., 2001; Štulík et al., 2004).

Trendem je také spojení kapilární elektroforézy s hmotnostní spektrometrií (CE/MS), které nachází uplatnění v oblasti analýzy látek iontové povahy v komplikovaných matricích, kde se dobře uplatní vysoká účinnost CE s možností strukturně selektivní detekce hmotnostním spektrometrem. Spojení je nejčastěji realizováno pomocí iontového zdroje typu elektrosprej. Mezi hlavní technické problémy komplikující propojení obou přístrojů patří příliš nízký průtok základního elektrolytu separační kapilárou a problém realizace vodivého spojení konce separační kapiláry se zemnící elektrodou pro elektroforézu (Soga, Heger, 2000; Štulík et al., 2004).

2.4.2. Chromatografické metody

Chromatografie je fyzikálně chemická dělící metoda, při které dochází k mnohonásobnému rozdělování dělených látek mezi dvě fáze (Nemec, 1988).

Přes kolonu, která je naplněná sorbetem, postupuje určitou rychlostí mobilní fáze. Vzorek směsi se nastřikuje na začátek kolony a mobilní fáze ho unáší ke konci kolony. Na chromatografické koloně následně dochází k separaci složek směsi. Při průchodu kolonou přechází každá molekula vzorku mnohokrát z proudu mobilní fáze do fáze stacionární a zpět. Doba, po kterou separovaná látka setrvá v koloně, závisí na velikosti interakce mezi složkou a stacionární fází a určuje pořadí, v jakém složka směsi vychází z kolony. Čím intenzivnější jsou interakce na povrchu sorbetu, tím vychází složka z kolony později a má větší retenční čas (Churáček et al., 1991).

2.4.2.1. Vysokoúčinná kapalinová chromatografie (HPLC)

Předností HPLC je rychlost analýzy, vysoká dělící schopnost, možnost automatické detekce, identifikace a kvantitativní vyhodnocení chromatogramu. Metoda

je vhodná zejména pro svou širokou oblast použitelnosti, kdy lze analyzovat ionty, látky polární i nepolární, málo těkavé, tepelně nestabilní i vysokomolekulární. Další výhodou je možnost ovlivňovat analýzu složením mobilní fáze, která se významně podílí na separaci. Nevýhodou je drahé přístrojové vybavení a složitější mechanismus separace (Štulík et al., 2004; Doležalová et al., 1995).

Iontově výměnná chromatografie (IEC) je založena na výměně iontů mezi iontoměničem a vodnou pohyblivou fází, proto je možné dělit pouze takové látky, které jsou ve vodných roztocích disociovány na ionty. Využívá se ke stanovování vysokomolekulárních i nízkomolekulárních látek, jako například AA, bílkovin, enzymů.

IEC analýza je jednoduchá na přípravu (vysráží se pouze proteiny), ale je zapotřebí většího množství vzorku. Značnou nevýhodou této metody je její časová náročnost (Walker, Mills, 1995).

Vysokoúčinná kapalinová chromatografie na reverzní fázi (RP-HPLC) s automatizovanou předkolonovou derivatizací je jedna ze základních metod pro stanovení AA. V porovnání s iontově výměnnou chromatografií poskytuje tato metoda vyšší citlivost, univerzálnost a kratší dobu analýzy. Mezi nejčastěji používaná derivatizační činidla patří o-ftaldialdehyd (OPA) a fenylisothiokyanát (PITC). Analýza s derivatizací s OPA je jednoduchá a rychlá, ale může být použita pouze pro určování primárních AA. K detekci derivátů se využívají fluorimetrické nebo UV detektory (Davey, Ersser, 1990; Teerlink et al., 1994; Feste, 1992; Piraud et al, 2005).

Byla také popsána řada metod v souvislosti s nederivatizovanými AA. Patří mezi ně HPLC spojená s různými detektory, které byly srovnávány v rámci výhod a nevýhod. Refraktometrické detektory jsou málo citlivé a proto se využívají pouze tehdy, pokud ostatní detektory neposkytují pro analyzované látky odezvu. Mezi citlivější patří elektrochemický detektor, který se ale neukázal být vhodný při stanovování analytů ve složitých matricích. Dále bylo testováno spojení HPLC s detektorem založeným na rozptylu záření s vypařováním mobilní fáze (ELSD-evaporative light scattering detection), jeho použití je ale omezeno na netěkavé látky a těkavé mobilní fáze (Sereno 1996; Petritis et al., 2000; Petritis, Elfakir, Dreux, 2002; Štulík et al., 2004; Marioli, Petritis et al., 2004; Pennanec, Petritis, Dreux, 2004).

Pro rychlou a citlivou analýzu nederivatizovaných AA se ukázala jako perspektivní metoda HPLC spojená s tandemovou hmotnostní spektrometrií (HPLC/MS/MS), která sdružuje dvojici oddělených hmotnostních analyzátorů, které pracují víceméně nezávisle a umožňují tak sledovat reakce probíhající ve spektrometru.

Touto metodou lze separovat až 76 AA. Při tomto spojení mohou být analyty ionizovány elektrosprejem nebo chemickou ionizací. HPLC/MS/MS analýzou AA v tělních tekutinách je možné diagnostikovat některé dědičné metabolické poruchy a proto je jí dnes věnována velká pozornost (Ubik, 2001; Carpenter K. H., Wiley V., 2002; Rashed, 2001; Petritis, Elfakir, Dreux, 2002; Piraud et al., 2003; Štulík et al., 2004; Piraud et al., 2005).

Pro stanovení nederivatizovaných polárních AA byla vyvinuta také metoda kapalinové chromatografie na reverzní fázi. Takto bylo analyzováno 10 AA (Asp, Asn, Ser, Gly, Gln, Cys, Glu, Thr, Ala, Pro), které nejsou dostatečně rozdělené v běžném kapalinovém chromatografu (Petritis, 1999).

2.4.2.2. Ultravysokotlaká kapalinová chromatografie (UPLC)

Zaváděním nových chromatografických materiálů v kolonách je možné použít pro analýzu organických kyselin také novou ultravysokotlakou kapalinovou chromatografii. Tato metoda zajišťuje kvalitnější a rychlejší analýzu a vyšší citlivost než je tomu u HPLC (Grumbach, Wheat, Mazuro, 2006; Grumbach et al., 2005).

2.4.2.3. Plynová chromatografie (GC)

Metoda plynové chromatografie vyžaduje, aby všechny látky vstupující do dělícího systému byly v plynné fázi. Tento požadavek určuje jak rozsah analyzovatelných látek, tak možnost jejich stanovení. GC je potenciální metodou pro analýzu velkého počtu organických látek a používá se pro široký rozsah koncentrací analytů, oblast aplikací se pohybuje v koncentračním rozsahu 0,001 až 10 000 ppm.

Analytická metoda GC se vyznačuje nejen největší variabilitou detekčních možností, ale také detektory s největší citlivostí a největší selektivitou mezi všemi separačními technikami. Mezi nejrozšířenější detektor v plynové chromatografii patří od svého zavedení v roce 1958 plamenově ionizační detektor (Flame Ionization Detector - FID). Detekční objem plamenově ionizačního detektoru je malý (5 až 10 µl) a vhodný pro nejrůznější instrumentální uspořádání. FID detektor nevykazuje selektivitu, proto je univerzálním detektorem pro organické látky a je charakteristický vysokou citlivostí. Je používán ve spojení s GC ve všech analytických aplikacích při analýze hlavních složek i stopových množství.

Lze také použít spojení GC s hmotnostně spektrometrickým detektorem (GC/MS). Problémem propojení obou zařízení je jejich tlaková nekompatibilita. Tlak na výstupu kolony GC je atmosférický, ale iontové zdroje používané pro tuto kombinaci pracují optimálně za vysokého vakua. Zvýšení tlaku v iontovém zdroji a hmotnostním analyzátoru vede k poklesu citlivosti a zhoršení charakteru spekter. Předpokladem pro úspěšné spojení GC/MS je dostatečně výkonný čerpací systém, který je schopný odčerpat nadbytek nosného plynu z prostoru ionizace.

Aplikovatelnost GC/MS je omezena pouze požadavkem dostatečné těkavosti analyzované látky, která musí projít separační kolonou. Tuto podmínku splňuje asi 10% známých organických látek. Díky vysoké separační účinnosti kapilárních kolon je tato technika používána pro analýzu komplikovaných směsí látek a pro komplexní vzorky obsahující neznámé složky.

Derivatizační technika v GC

Mez detekce, její citlivost a selektivitu lze do určité míry ovlivnit chemickou strukturou analyzované látky. Zavedením vhodných atomů nebo funkčních skupin do molekuly původní látky (derivatizací) lze zlepšit, usnadnit nebo umožnit vůbec její analýzu.

Derivatizační techniky využívají specifické reakce, kterými lze docílit kvalitativně nových vlastností separovaných látek. V mnoha případech umožňují separaci dané skupiny látek anebo podstatně zvyšují citlivost detekce a současně snižují detekční limit a svým selektivním působením usnadňují identifikaci řady organických látek.

Nejvýznamnější důvody vedoucí k derivatizaci:

- 1. Zvýšení těkavosti analyzovaných látek.
- Zamezení nežádoucí sorpce, protože některé funkční skupiny vytvářejí silné interakce se stacionární fází.
- 3. Zlepšení selektivity, citlivosti a snížení meze detekce.

(Churáček et al., 1991).

Hlavní nevýhodou derivatizace je to, že se zavádí operace navíc, a tím se zvyšuje komplexnost analýzy, její chyba i celková doba trvání (Štulík et al., 2004).

Cílem derivatizace organických kyselin je zablokování polárních funkčních skupin v jejich struktuře. Derivatizace přemění původní analytickou strukturu na sekundární molekulu přes chemické reakce s jednou nebo víre reagencií. Předchozí derivatizační metody vyžadovaly bezvodé prostředí a dlouhé reakční doby, nebo se prováděly dvoustupňové metody s esterifikací karboxylu a následné alkylace ostatních skupin po odpaření původního média. Dlouhé a pracné přípravy vzorků před analýzou GC často odrazovaly (Hušek, 2005; Hušek, Šimek, 2006).

Ideální derivatizační procedura by měla splňovat některé podmínky, jako je jednoduchá příprava vzorku, možnost derivatizace ve vodném prostředí, okamžitá nebo velmi rychlá reakce při pokojové teplotě, používání malého množství levných činidel. Těmto podmínkám se přiblížil objev chlormravenčanů (alkyl chloroformates, RCF), které jsou schopné esterifikovat okamžitě karboxylovou skupinu v přítomnosti pyridinu (PYR) a to i ve vodném alkoholovém prostředí. Tato procedura je robustní a okamžitá a vede k vysokým reakčním výnosům (Hušek, Šimek, 2006).

Mezi nejjednodušší a nejvíce reaktivní derivatizační činidla patří ethylchlormravenčan (ECF) a methylchlormravenčan (MCF). Chlormravenčany byly použity k přípravě derivátů dikarboxylových a trikarboxylových kyselin (Šimek, Hušek, Matucha, 2003), mastných kyselin (Šimek, Hušek, Tvrzička, 2002), aromatických kyselin a aminokyselin (Šimek, Hušek, 2003). Metodika byla optimalizována a stanovení bylo možné v době kratší než 5 minut. Hlavní výhoda nové metody byla ve vysoké citlivosti, velké rozlišovací schopnosti, v přesnosti a spolehlivosti a také v možnosti identifikovat neznámé složky směsi. Dále byla testována činidla s delšími alkylovými řetězci, jako je propyl-, isobutyl- a butyl- chlormravenčan (PCF, IBCF, BCF) (Hušek, Šimek, 2006).

Metodického rozšíření derivatizace se dosáhlo kombinacemi RCF činidel a alkoholu za tvorby různých esterů. Vyzkoušena byla například kombinace isobutylchlormravenčan (IBCF) s heptafluorobutanolem (HFB) nebo IBCF s trimethylsilylmethanolem (TMSM) (Hušek, 2005; Hušek, Šimek, 2006).

21

2.5.1. Princip GC

U plynové chromatografie dochází k dělení směsí látek na základě distribuce mezi pohyblivou fází, kterou je plyn, a stacionární fází. Jako zdroj pohybu mobilní fáze je využíván tlakový spád a stacionární fáze je uspořádána v koloně (Nemec, 1988).

2.5.2. Instrumentální uspořádání GC

2.5.2.1. Zdroje nosného plynu, popřípadě pomocných plynů a zařízení pro jejich čištění, regulaci, měření tlaku a průtoku

Jako nosný plyn lze použít každý plyn, který je dostatečně čistý a vhodný pro použitý detektor. Musí být inertní vůči stacionární fázi, analyzovaným látkám a materiálu jednotlivých částí chromatografu, se kterými přichází do styku. Nejběžnějšími nosnými plyny jsou helium a vodík, méně často argon, dusík nebo oxid uhličitý. Pomocné plyny, mezi které patří vzduch, kyslík, vodík nebo oxid uhličitý, umožňují dávkování, chlazení a funkci detektorů. Zdrojem nosného i pomocného plynu jsou ocelové tlakové lahve naplněné příslušným plynem.

Hlavním problémem nosných plynů jsou přítomné nečistoty, které se do systému dostávají zpravidla při výměně tlakových lahví, netěsnostmi v systému nebo neodpovídající instalací plynového rozvodu. Nečistoty jako vodní pára nebo kyslík mohou interagovat s analytem nebo stacionární fází a tím omezit přesnost výsledků.

Chromatografické separace i funkce některých detektorů jsou závislé na průtoku nosného plynu a proto je důležité udržet jeho definovanou a konstantní hodnotu vhodnou regulací (Štulík et al., 2004).

2.5.2.2. Zařízení pro dávkování vzorku

Teplota injektoru se volí tak, aby se při dávkování vzorek okamžitě vypařil a v injektoru dále nekondenzoval. Vyměnitelná vnitřní část injektoru (liner) vytváří chemicky inaktivní prostředí pro zplyněný vzorek a homogenizuje vytvořený plynný vzorek.

Úkolem sept je utěsnění systému a dostatečná elastičnost pro průnik injekční jehly. Mohou se ale stát zdrojem provozních i aplikačních problémů, jelikož plasty používané pro septa mají různou tepelnou odolnost a liší se v chemických a mechanických vlastnostech.

Vzorek se dávkuje injekční stříkačkou, která umožňuje nasátí vzorku do kalibrované odměrné části stříkačky. Je možné také dávkování automatickými dávkovači (auto sampler), které jsou vybaveny jehlami speciálních tvarů (Štulík et al., 2004).

2.5.2.2.1. Separační systém

Úspěch analýzy do značné míry závisí na výběru separační kolony.

Dříve se používaly náplňové kolony, což byly skleněné nebo kovové trubice, které měly vnitřní průměr 2-5 mm. Byly naplněné adsorbentem nebo nosičem smočeným zvolenou stacionární fází. Délka kolony o vnitřním průměru 2 mm byla nejčastěji 2 m.

V kolonách naplněných adsorbentem může být použit silikagel, uhlíková nebo zeolitová molekulová síta, uhlík a aktivní uhlí nebo pórovité organické polymery.

V kolonách naplněných nosičem smočeným stacionární fází je volba vhodného nosiče velmi důležitá, musí se přihlížet k jeho struktuře a povrchovým vlastnostem. Dobrý nosič musí být mechanicky pevný, tepelně stabilní, inertní vůči stacionární fázi a složkám vzorku, dobře smáčivý zvolenou stacionární fází, s určitým specifickým povrchem, velikostí a distribucí pórů. Nejvíce používanými nosiči v GC jsou různě upravené křemeliny. Stacionární fáze se volí tak, aby měla podobnou chemickou strukturu jako složky vzorku. Komerčně jsou dostupné stovky stacionárních fází. V současnosti dochází k výhradnímu používání profesionálně připravených kapilárních kolon. Tloušťka vrstvy stacionární fáze musí být dostatečná ($0,2 - 0,5 \mu m$), aby byl vyloučen nekontrolovaný retenční mechanismus v mezifází nosič-stacionární fáze a na povrchu nosiče. Prodloužení doby analýzy ovlivňuje nejen rostoucí tloušťka filmu stacionární fáze, ale ještě významněji také rostoucí délka kolony. Rozměry kolony by měly být voleny tak, aby splnily podmínku požadovaného rozlišení a krátké doby analýzy (jednotky až desítky metrů) (Churáček et al., 1991; Štulík et al., 2004).

2.5.2.2.2. Termostat

Jednou z kritických veličin v GC je teplota a její stabilita. Na ní závisí přesnost a reprodukovatelnost naměřených údajů, např. elučních časů a ploch pod píky. Proto je třeba udržovat zvolený konstantní teplotní režim nástřiku, kolony, detektoru a regulátoru tlaku a průtoku. Teplota těchto částí ovlivňuje kvalitu měření různým způsobem, proto jsou tyto prostory odděleně termostatovány a udržovány na optimálním teplotním režimu (Štulík et al., 2004).

2.5.2.3. Detektory pro plynový chromatograf

Obraz průběhu separace v koloně je zprostředkován měřícím zařízením, do kterého ústí výstup kolony. Detektory jsou konstrukční částí měřících zařízení, ve kterých je fyzikálně chemická vlastnost analytu převáděna na měřitelný, většinou elektrický signál.

V plynové chromatografii lze použít tepelně vodivostní detektor, detektor elektronového záchytu, plamenově ionizační detektor nebo hmotnostní spektrometr (Churáček et al., 1991; Štulík et al., 2004).

2.5.2.3.1. Plamenově ionizační detektor (Flame Ionization Detector, FID)

Byl zaveden již v roce 1958 a od té doby je nejrozšířenějším detektorem v plynové chromatografii. Princip spočívá v měření změny ionizačního proudu vodíko-

24

vzduchového plamene způsobené přítomností eluovaného analytu. FID je tvořen hořákem, do kterého ústí výstup z kolony a přívod vodíku. Nad hořákem jsou umístěny sběrné elektrody iontů a elektronů, které vznikají při hoření vodíku a analytu a dále také přívod vzduchu pro difúzní plamen (Obr. 2. 6) (Churáček et al., 1991; Štulík et al., 2004).

Obr. 2. 6: Schéma plamenového ionizačního detektoru: 1 – vstup nosného plynu, 2 – vodík, 3 – vzduch, 4 – hořáček, 5, 6 – elektrody, 7 – výstup do atmosféry (Churáček et al., 1991).

2.5.2.3.2. Hmotnostní spektrometr

Hmotnostní spektrometrie (MS) je fyzikálně – chemická metoda, která slouží k určování hmot volných molekul a jejich částí. Stanovované látky se nejdříve musí převést na kladné nebo záporné ionty. Hmotnostní spektrometr je pak iontově optické zařízení, které tyto ionty separuje podle jejich efektivních hmot (m/z). Umožňuje také stanovit hodnotu této hmoty, z celkového množství iontů a molekul obsažených ve směsi určit relativní zastoupení iontů jedné hmoty a zjistit relace mezi jednotlivými ionty. Registrací molekulárních a fragmentových iontů je získán záznam, charakteristický pro danou látku. Tento záznam (hmotové spektrum) podává informace o struktuře a na jeho základě lze většinou strukturu analyzované látky odvodit nebo potvrdit.

Hmotnostní spektrometrie je univerzální analytická metoda, která se používá k charakterizaci jak nízkomolekulárních, tak i vysokomolekulárních látek. Využití této metody je především ve stopové analýze organických látek s důrazem na zjištění jejich struktury (Štulík et al., 2004; Ubik, 2001).

Základní tři funkční složky MS jsou iontový zdroj, analyzátor a registrační zařízení, ke kterým dále patří systém zavádění vzorků, vakuový systém a počítač jako řídící stanice. Schéma hmotnostního spektrometru je uvedeno na Obr. 2.7 a Obr. 2. 8.

Obr. 2. 7: Blokové schéma hmotového spektrometru (Ubik, 2001).

Obr. 2. 8: Schéma hmotnostního spektrometru (Böhm, Smrčková-Voltrová, 1995).

Iontový zdroj, někdy také za spoluúčasti vstupního systému, převádí analyzované látky na ionty, které se v iontově optickém systému fokusují na úzký svazek, urychlují a injikují do analyzátoru. Typ iontového zdroje se volí podle druhu analyzované látky a požadavku na analýzu.

Elektronová ionizace (EI) je v současnosti nejběžnější způsob ionizace. Ionizace je vyvolána proudem elektronů emitovaných žhaveným vláknem (katodou). Proud elektronů postupuje iontovým zdrojem směrem k anodě. Energii elektronů přicházejících do kontaktu s ionizovanou látkou určuje potenciálový rozdíl mezi žhavenou katodou a anodou (Obr. 2. 9). Někdy se do prostoru ionizační komůrky umisťuje malý magnet, jehož pole zakřivuje dráhu elektronů a to vede ke zvýšení pravděpodobnosti interakce s molekulou.

Obr. 2. 9: Schéma iontového zdroje pro elektronovou ionizaci (Štulík et al. 2004).

Další ionizační metodou je **chemická ionizace** (**CI**). Primární zdroj je jako v předchozím případě proud urychlených elektronů, rozdíl je v přenosu energie na ionizovanou molekulu, který není přímý, ale zprostředkovaný přes reakční medium. Elektronovou ionizací se nejprve ionizuje reakční medium, což je nejčastěji plyn, a kombinací elektronové ionizace a iontově - molekulárních reakcí vzniká směs iontů, které se dále účastní přenosu náboje na molekuly analyzované látky.

Z iontového zdroje vstupuje směs iontů do analyzátoru, který rozliší ionty podle jejich efektivní hmoty m/z. Nejběžněji používaný je **kvadrupolový analyzátor**. Skládá se ze čtyř kovových tyčí (Obr. 2.10) připojených ke zdrojům stejnosměrného a vysokofrekvenčního střídavého napětí. Ionty, které vlétnou do prostoru mezi tyčemi, začnou v důsledku střídavého elektrického pole oscilovat. Při určitých hodnotách stejnosměrného a střídavého napětí projdou kvadrupólem pouze ionty o určitém m/z, ostatní jsou zachycené na tyčích kvadrupólu nebo na stěnách přístroje. Postupnou změnou vkládaného napětí (skenováním) je možné nechat tímto filtrem postupně projít ionty ve zvoleném intervalu hodnot m/z.

Dalším analyzátorem je **iontová past**, což je v podstatě trojrozměrný kvadrupól. Skládá se ze tří elektrod s hyperbolickým průřezem, z nichž jedna je prstencová a další dvě jsou kruhové a prstenec volně uzavírají. Horní a dolní elektroda jsou uzemněny a na střední prstencovou elektrodu se při konstantní frekvenci přivádí vysokofrekvenční napětí s měnící se amplitudou (Obr. 2.11).

Činnost iontové pasti je možné rozdělit do dvou fází. Nejprve se do iontové pasti otvorem v kruhové elektrodě přivedou molekuly analyzované látky a pulsem elektronů se provede ionizace. Nebo je také možné provést ionizaci v externím iontovém zdroji a do prostoru iontové pasti přivést již analyzovanou látku v iontovém stavu. Prstencová elektroda je udržována na nízké hodnotě amplitudy, aby zachytila všechny vytvořené ionty. Následně se amplituda střídavého napětí zvyšuje a s její rostoucí hodnotou jsou ionty s rostoucí m/z postupně vypuzovány z pasti a přes otvor výstupní kruhové elektrody vedeny do detektoru.

Výstupní kruhová elektroda

Obr. 2. 11: Průřez iontovou pastí

Obr. 2. 10: Kvadrupólový analyzátor

Používají se násobičové detektory, využívající efektu násobení elektronů vzniklých po dopadu iontů, které poskytují měřitelné signály pro jednotlivé ionty.

Elektronásobičové detektory mohou být konstruovány s diskrétním dynodovým polem a nebo kontinuální dynodou. Prvý typ se skládá ze série kovových destiček (dynod), které jsou elektricky propojené přes vhodné odpory tak, že po přivedení vysokého napětí mezi první a poslední řadu dynod jsou elektrony urychlovány směrem k následující dynodě a nakonec zachyceny kolektorem. Po dopadu iontu jsou z první dynody vyraženy elektrony, jejichž počet se násobí dopadem na další dynody. Tyto násobiče dosahují hodnot zesílení 10^7 - 10^8 .

Násobiče s kontinuální dynodou jsou tvořeny zakřivenou trubicí z olovnatého skla s vysokým elektrickým odporem. Ústí a konec trubice je připojen ke zdroji vysokého napětí. Z materiálu trubice jsou po dopadu iontu vyraženy elektrony, které jsou urychlovány elektrickým polem směrem ke kolektoru. Opakovanými nárazy na stěnu trubice spojenými s emisí dalších elektronů jejich počet lavinovitě roste.

Při detekci **fotonásobičovým detektorem** jsou ionty na pomocné kovové elektrodě předem konvertovány na elektrony, které po dopadu na scintilační stínítko poskytují fotony, jež vstupují do fotonásobiče.

Ve srovnání s elektronásobičem je fotonásobičový detektor konstrukčně složitější, ale výhodou je jeho vyšší citlivost a delší životnost, neboť vnitřek fotonásobiče není ve styku s vnitřním prostředí hmotnostního spektrometru.

Signál z detektoru je po digitalizaci převeden do počítače a vhodným programovým vybavením zpracován do formy hmotnostních spekter.

Hmotnostní spektrometr dále doplňuje vakuový čerpací systém, který umožňuje udržet dostatečně nízký tlak za všech provozních podmínek. Na kvalitě vakua uvnitř přístroje závisí kvalita spekter poskytovaných hmotnostním spektrometrem. Čerpací systém, který odčerpává z prostoru iontového zdroje nadbytek mobilní fáze, je ve většině případů dvoustupňový. Přečerpává se mechanickými rotačními pumpami a dočerpává na pracovní tlak difúzní nebo turbomolekulární pumpou. Základní součástí mechanické pumpy je disk excentricky rotující ve válcové dutině, jehož rotace vede k periodickému přečerpávání vzduchu od vstupu k výstupu.

Často používanou vysokovakuovou pumpou je **difúzní pumpa**, jejíž schéma je na Obr. 2.12. Na dně pumpy se v ohřívaném prostoru přivádí k varu vhodná kapalina a její páry se vedou systémem trysek, zpětně kondenzují na chlazených stěnách a stékají dolů. Páry vystupují z trysek vysokou rychlostí a strhávají okolní vzduch do prostoru vstupního otvoru, kde je poté odčerpán mechanickou rotační pumpou. Při vhodné volbě provozních podmínek lze stabilně dosáhnout tlaků až 10⁻⁶ Pa.

Mechanicky náročnějším zařízením je **turbomolekulární pumpa**. Čerpacího efektu je dosaženo rotací turbínky zajišťované vysokofrekvenčním elektromotorem, jejíž lopatky se otáčejí proti opačně orientovaným lopatkám statoru. Při otáčkách 60 000 min⁻¹ lze dosáhnout tlaku až 10⁻⁸ Pa. Schéma tohoto zařízení je na Obr. 2.13.

Obr. 2. 12: Difúzní pumpa

Obr. 2. 13: Turbomolekulární pumpa

Základním informačním výstupem hmotnostního spektrometru je hmotnostní spektrum, díky němuž lze určit strukturu analyzované látky. Na vodorovné ose je vynesena hodnota m/z a osa svislá vyjadřuje odezvu detektoru, která je úměrná intenzitě iontového proudu. Hmotnostní spektra se programově převádějí do normalizovaného tvaru, kdy na svislou osu se vynáší relativní intenzita iontového proudu v procentech. Hodnotě 100% pak přísluší nejintenzivnější pík ze spektra. Programy pro vyhodnocování hmotnostních spekter zobrazují píky v čárové formě. Nejsou to skutečné tvary zobrazované iontovou optikou a snímané detektorem, ale programově redukovaná data, v nichž je reálný pík nahrazen úsečkou, jejíž poloha na úsečce m/z odpovídá maximu píku a délka jeho relativní intenzitě.

Pro zpracování výsledků analýzy hmotnostním spektrometrem je nezbytné **počítačové vyhodnocení** hmotnostních spekter. Po ionizaci elektronem je to nejběžnější a nejrychlejší způsob navržení struktury, který je zcela nezbytný při zpracování výsledků analýzy komplikovaných směsí látek, kdy je nutno identifikovat velký počet komponent. Celý proces je založen na počítačovém porovnání získaného spektra se standardními knihovními spektry (Štulík et al., 2004).

3. CÍL PRÁCE

Cílem této práce bylo:

- Vypracovat metodu pro stanovení organických kyselin novým postupem extrakční derivatizace.
- Identifikovat a stanovit hlavní složky organických kyselin v modelových vzorcích krevního séra a plasmy technikou plynové chromatografie s hmotnostně spektrometrickou detekcí.
- Porovnat zastoupení organických kyselin v plasmě a séru a vyhodnotit možnosti uplatnění metody v klinické diagnostice.

4. PŘEDPOKLÁDANÉ HYPOTÉZY

- Nová metoda může významně přispět ke zvládnutí komplexní analýzy organických kyselin v tělních tekutinách.
- Krevní sérum a plasma jsou velmi podobné biologické matrice a proto se předpokládá, že se nebude výrazně lišit zastoupení jednotlivých organických kyselin.

5. POPIS METODIKY

5.1. Použité chemikálie

Ethanol, 1M NaOH, 2M NaOH, fyziologický roztok (0,9 % roztok NaCl), pyridin, isooktan (IC8), ethylchlormravenčan (ECF), CHCl₃, 50 mM HCl, 1M HCl, hexan, aceton, destilovaná voda, dusík na odpaření methanolu.

5.2. Použitý laboratorní materiál

Pro přípravu vzorků byly použité automatické nastavitelné mikropipety 50 – 200 μl (Transferpettor, Merck), skleněné stříkačky 10 μl (Hamilton), skleněné vialky (Supelco), skleněné mikrozkumavky na derivatizační reakci (Kimble/Kontes), plastové mikrozkumavky (Eppendorf), stolní centrifuga (Tomy), vortex (ÚOCHB).

5.3. Standardní roztoky

V této práci bylo použito 43 standardních roztoků, z toho 22 aminokyselin (Tab. 5. a), 8 mastných kyselin (Tab. 5. b), 5 keto- a hydroxy- kyselin (Tab. 5. c) a 8 dikarboxylových kyselin + HA (Tab. 5. d). Jako vnitřní standard byl použit ethionin (Eth). Aminokyseliny byly zakoupeny od firmy Fluka a rozpuštěny v HCl (50 mmol/l), mastné kyseliny byly zakoupeny od firmy Sigma a rozpuštěny v isooktanu nebo v ethanolu. Dikarboxylové kyseliny byly zakoupeny od firmy Sigma a rozpuštěny v methanolu. Keto- a hydroxy- kyseliny byly zakoupeny od firmy Sigma a rozpuštěny v deionizované vodě.

		AA		ECF deriváty AA	
Aminokyselina	Zkratka	Sumární vzorec	FW	Sumární vzorec	FW
Alanin	Ala	C3H7NO2	89,09	C8H15NO4	189,21
Asparagin	Asn	C4H8N2O3	132,12	C12H20N2O7	304,30
Kys. asparagová	Asp	C4H7NO4	133,10	C11H19NO6	261,27
Cystin	CC	C6H12N2O4S2	240,30	C16H28N2O8S2	440,53
Cystein	Cys	C3H7NO2S	121,16	C8H15NO4S	293,35
Glutamin	Gln	C5H102O3	146,14	C13H22N2O7	318,31
Kys. glutamová	Glu	C5H9NO4	147,13	C12H21NO6	275,30
Glycin	Gly	C2H5NO2	75,07	C7H13NO4	175,18
Homocystein	Нсу	C4H9NO2S	135,18	C9H17NO4S	235,30
Histidin	His	C6H9N3O2	155,16	C14H21N3O6	327,33
Isoleucin	Ile	C6H13NO2	131,17	C11H21NO4	231,29
Leucin	Leu	C6H13NO2	131,17	C11H21NO4	231,29
Lysin	Lys	C6H14N2O2	146,19	C14H26N2O6	318,37
Methionin	Met	C5H11NO2S	149,21	C10H19NO4S	249,33
Ornithin	Orn	C11H11NO2	132,16	C13H24N2O6	304,34
Phenylalanin	Phe	C9H11NO2	165,19	C14H19NO4	265,30
Prolin	Pro	C5H9NO2	115,13	C10H17NO4	215,25
Serin	Ser	C3H7NO3	105,09	C8H15NO5	205,21
Threonin	Thr	C4H9NO3	119,12	C9H17NO5	219,23
Tryptophan	Trp	C11H12N2O2	204,23	C9H15NO4S	233,28
Tyrosin	Tyr	C9H11NO3	181,19	C17H23NO7	353,37
Valin	Val	C5H11NO2	117,15	C10H19NO4	217,26

Tab. 5. a: Aminokyseliny: Zkratka, běžný název, sumární vzorec a molekulová hmotnost AA a ECF derivátů AA.

		FA		ECF deriváty FA	
Mastná kyselina	Zkratka	Sumární vzorec	FW	Sumární vzorec	FW
Kys. laurová	C12:0	C12H24O2	200,32	C14H28O2	228,37
Kys. myristová	C14:0	C14H28O2	228,37	C16H32O2	256,42
Kys. palmitová	C16:0	C16H32O2	256,42	C18H36O2	284,48
Kys. stearová	C18:0	C18H36O2	284,48	C20H40O2	312,53
Kys. linolová	C18:2n6	C18H32O2	280,45	C20H36O2	308,50
Kys. linolenová	C18:3n3	C18H30O2	278,43	C20H34O2	306,48
Kys. arachidonová	C20:4n6	C20H32O2	304,47	C22H36O2	332,52
Kys. cervonová	C22:6n3	C20H32O2	328,49	C22H36O2	356,54

Tab. 5. b: Mastné kyseliny: Zkratka, běžný název, sumární vzorec a molekulová hmotnost FA a ECF derivátů FA.

				ECF deriváty	
		KA/OHA		KA/OHA	
Ketokyselina/		Sumární		Sumární	
hydroxykyselina	Zkratka	vzorec	FW	vzorec	FW
Kys.methylmalonová	MMA	C4H6O4	118.09	C8H14O4	174.19
Kys.mléčná	2HP	C3H6O3	90.08	C5H10O3	190.19
Kys.2-hydroxymáselná	2HB	C4H8O3	104.10	C9H16O5	204.22
Kys.vanilmandlová	VMA	C9H10O5	198.17	C17H22O9	370.35
Kys.5-					
hydroxyindolyloctová	HIAA	C10H9NO3	191.18	C10H9NO3	191.18

Tab. 5. c: Organické kyseliny: Zkratka, běžný název, sumární vzorec a molekulová hmotnost KA/OHA a ECF derivátů KA/OHA.

Dikarboxylové		diCA+HA		ECF deriváty diCA+HA	
kys. + HA	Zkratka	Sumární vzorec	FW	Sumární vzorec	FW
Propandiová kys.	C3	C3H4O4	104	C7H12O4	160
Butandiová kys.	C4	C4H6O4	118	C8H14O4	174
Pentandiová kys.	C5	C5H8O4	132	C9H16O4	188
Hexandiová kys.	C6	C6H10O4	146	C10H18O4	202
Heptandiová kys.	C7	C7H12O4	160	C11H20O4	216
Oktandiová kys.	C8	C8H14O4	174	C12H22O4	230
Nonandiová kys.	C9	C9H16O4	188	C13H24O4	244
Dekandiová kys.	C10	C10H18O4	202	C14H26O4	258
Hippurová kys.	HA	C9H9NO3	179	C14H17NO5	221

Tab. 5. d: Dikarboxylové kyseliny: Zkratka, běžný název, sumární vzorec a molekulová hmotnost diCA + HA a ECF derivátů diCA + HA.

5.4. Postup pro stanovení standardů, derivatizace s ECF

- Nadávkování standardních roztoků do skleněných mikrozkumavek pomocí skleněné stříkačky. Při dávkování jednotlivých standardních roztoků se stříkačka promývá acetonem. Do 1. mikrozkumavky nadávkování standardních roztoků aminokyselin, do 2. roztoků mastných kyselin, do 3. roztoků keto-/hydroxy-kyselin a do 4. standardních roztoků dikarboxylových kyselin.
- Odpaření obsahu 4. mikrozkumavky dusíkem (methanol, ve kterém byly některé diCA rozpuštěny, by mohl analýzu rušit).
- Přidání do všech čtyř skleněných mikrozkumavek po 3 μl vnitřního standardu ethioninu (10 nmol).
- Přidání 120 μl ethanolu pomocí automatické mikropipety, protřepání (vortex).
- Přidání 75 μl roztoku 1M NaOH s fyziologickým roztokem (1:1) pomocí automatické mikropipety, protřepání (vortex).
- 6. Přidání skleněnou stříkačkou 15 μl pyridinu, protřepání (vortex).

- Přidání 30 µl IC8 s ECF (7:3), důkladné protřepání až do vyčeření prstence organické fáze.
- Přidání 100 µl CHCl₃ s 1% ECF, důkladné protřepání (organická fáze přejde do spodní vrstvy).
- Přidání 100 μl 1M HCl (fáze se oddělí a vyčeří nejlépe centrifugací na stolní centrifuze po dobu několika sekund).
- 10. Odebrání ze spodní organické fáze pro nástřik do chromatografu.

5.5. Biologický materiál

K analýze byly použity vzorky lidské plasmy a séra (Oddělení klinické biochemie nemocnice v Českých Budějovicích). Ke vzorkům se přistupovalo jako k biologickému materiálu. Vzorky skladovány při teplotě -20°C byly před vlastní analýzou ponechány při laboratorní teplotě a po rozmražení dále zpracovány.

5.6. Postup pro stanovení séra/ plasmy

A) Deproteinace:

- Nadávkování 150 µl séra/ plasmy do mikrozkumavky (Eppendorf) a přidání 3 µl vnitřního standardu ethioninu (10 nmol).
- Přidání 200 µl ethanolu (deproteinace), důkladné protřepání (vortex), ponechání několik minut a centrifugování (2-3 min.).
- 3. Odtažení 300 µl supernatantu do skleněné vialky.
- 4. Alkalizování vzorku přídavkem 20 µl 2M NaOH.
- Vytřepání neutrálních lipidů po přídavku 400 μl hexanu (na vortexu několik minut).
- 6. Po vytvoření dvou fází následuje bod B).
- *B)* Derivatizace s ECF:
 - Odebrání 200 µl ze spodní fáze do skleněné mikrozkumavky a přidání 15 µl pyridinu, protřepání (vortex).
 - Přidání 30 µl IC8 s ECF (7:3), důkladně se třepe až do vyčeření prstence organické fáze.
- Přidání 100 μl CHCl₃ s 1% ECF,důkladně protřepat (vortex), organická fáze přejde do spodní vrstvy.
- Přidání 100 μl 1M HCl (fáze se oddělí a vyčeří nejlépe centrifugací na stolní centrifuze po dobu několika sekund).
- 5. Odebrání ze spodní organické fáze pro nástřik do chromatografu.

5.7. Postup pro přípravu slepé zkoušky

- 1. Napipetování fyziologického roztoku do skleněné mikrozkumavky.
- Přidání 3 μl vnitřního standardu ethioninu (10 nmol) a 1 μl kys. 2phenylmáselné (2PBA, 10 nmol).
- 3. Dále se pokračuje podle postupu pro stanovení standardů od 4. bodu.

5.8. Použitá metoda pro stanovení organických kyselin

V této práci je použita metoda GC/MS založená na derivatizaci organických kyselin a dalších organických látek ethylchlormravenčanem (ECF), separací komponent na kapilární koloně GC a detekcí hmotnostním spektrometrem po elektronové ionizaci.

Ethylchlormravenčany převedou během krátké doby organické kyseliny ve vodném prostředí na analytické formy rozpustné v organických rozpouštědlech. Princip reakce je uveden na Obr. 5.1. a Obr. 5.2.

Ethylchlormravenčany jsou schopny esterifikovat nejen karboxylovou skupinu, ale také skupiny NH₂, SH, OH a N - heterocyklicky vázaný.

$\begin{array}{ccc} \mathsf{R-XH} & \xrightarrow{\mathsf{CH}_3\mathsf{CH}_2\mathsf{OCOCI}} & & \mathsf{R-XCOOCH}_2\mathsf{CH}_3\\ & \xrightarrow{\mathsf{CH}_3\mathsf{CH}_2\mathsf{OH}/\mathsf{báze}} (\mathsf{pyridin}) \end{array}$

Obr. 5.2.: Princip derivatizační reakce ECF, X = O, S, NH, N-heterocykl

Pro měření byla použita následující sestava: autosampler AI 3000, plynový chromatograf Finnigan TraceGC ultra, kvadrupólový hmotnostní spektrometr s ionizací nárazem elektronu Finnigan Trace DSQ (vše od firmy Thermo, San José, USA).

5.9. Podmínky analýzy

K měření byla použita kapilární kolona VARIAN Factor Four, typu VF-17ms, o rozměrech 15 m × 0,25 mm, tloušťka filmu stacionární fáze DF = 0,15 μ m. Počáteční teplota teplotního programu byla po dobu 0,5 min. konstantní a rovna 50 °C, poté byla zvyšována rychlostí 15 °C/ 1min. do 310 °C. Objem nadávkovaného vzorku byl 0,5 μ l , CT Splitless, Splitless Time 1 min. Teplota injektoru byla 230°C. Jako nosný plyn bylo použito helium (He), průtok He 1,2 ml za minutu. Teplota Transfer Line (spojení mezi GC a MS) byla 250 °C a teplota iontového zdroje 210°C.

6. VÝSLEDKY A DISKUSE

6.1. Výsledky

6.1.1. Analýza ECF derivátů organických kyselin ve standardních směsích

ECF deriváty byly nejprve analyzovány ve čtyřech standardních směsích:

- 1. Aminokyseliny
- 2. Mastné kyseliny
- 3. Ketokyseliny a hydroxykyseliny
- 4. Dikarboxylové kyseliny + HA

Příprava jednotlivých směsí byla prováděna za stejných experimentálních podmínek podle postupu uvedeného v kapitole 5.4. Pro následné měření takto připravených vzorků byla použitá sestava uvedená v kapitole 5.6. a vlastní analýza byla prováděna za podmínek uvedených v kapitole 5.7.

Chromatografické záznamy jednotlivých směsí jsou uvedeny na Obr. 6. 1, 6. 3, 6. 5 a 6. 7.

Spojením hmotnostního spektrometru s plynovou chromatografií lze provést identifikaci jednotlivých komponent vzorku ve směsích. Hmotnostní spektrometr umožňuje kromě obvyklé registrace zón látek eluovaných z kolony i jejich stanovení na základě hmotnostního spektra. Identifikace jednotlivých látek byla realizována počítačovým porovnáním získaného hmotnostního spektra s připravenou knihovnou spekter, která je běžně součástí systému GC/MS.

Pořadí jednotlivých látek eluovaných na chromatografické koloně je uvedeno spolu s retenčními daty v Tab. 6. a, 6. b, 6. c, 6. d.

Hmotnostní spektra jednotlivých stanovovaných organických látek jsou uvedena v příloze č. 1.

Obr. 6.1: Chromatografický záznam analýzy 23 aminokyselin s vnitřním standardem ve formě ECF derivátů na koloně VARIAN Factor Four, VF-17ms. Experimentální podmínky jsou uvedeny v kapitole 5. 9.

Obr. 6.2: Chromatogram aminokyselin (obr. 6.1) s vyhodnocením jednotlivých píků: 1-Ala, 2-Gly, 3-Val, 4-Leu, 5-Ile, 6-Thr, 7-Ser, 8-Pro, 9-Asn, 10-Asp, 11-Met, 12-Glu, 13-Eth (IS), 14-Phe, 15-Cys, 16-Hcy, 17-Gln, 18-Orn, 19-Lys, 20-His, 21-Tyr, 22-Trp, 23-CC

Aminokyselina	Zkratky	RT	Fragmentov	vé ionty (%	o četnosti)
Alanin	Ala	5,45	116 (100)	44 (69)	42 (8)
Glycin	Gly	5,72	102 (100)	74 (9)	56 (8)
Valin	Val	6,36	144 (100)	72 (27)	55 (26)
Leucin	Leu	6,94	158 (100)	102 (31)	44 (20)
Isoleucin	Ile	7,06	158 (100)	102 (30)	101 (22)
Threonin	Thr	7,58	129 (100)	101 (96)	100 (44)
Serin	Ser	7,58	129 (100)	101 (96)	100 (44)
Prolin	Pro	7,80	142 (100)	70 (60)	98 (17)
Asparagin	Asn	8,04	141 (100)	69 (98)	42 (30)
Kys. asparagová	Asp	8,79	188 (100)	116 (23)	142 (21)
Methionin	Met	9,37	61 (100)	129 (57)	175 (52)
Kys. glutamová	Glu	9,63	84 (100)	128 (89)	202 (75)
Ethionin - IS	Eth	9,75	75 (100)	129 (66)	175 (58)
Phenylalanin	Phe	10,19	176 (100)	91 (85)	102 (63)
Cystein	Cys	10,55	102 (100)	220 (81)	74 (75)
Homocystein	Нсу	11,30	128 (100)	56 (24)	129 (20)
Glutamin	Gln	11,51	84 (100)	128 (24)	173 (21)
Ornithin	Orn	11,97	142 (100)	70 (24)	98 (8)
Lysin	Lys	12,56	156 (100)	84 (15)	128 (12)
Histidin	His	13,04	81 (100)	154 (49)	238 (44)
Tyrosin	Tyr	13,63	107 (100)	192 (36)	135 (17)
Tryptophan	Trp	14,68	130 (100)	131 (10)	103 (3)
Cystin	CC	15,65	188 (100)	174 (69)	220 (68)

Tab. 6. a: Hmotnosti fragmentových iontů s jejich četností a retenční data ECF derivátů aminokyselin.

Obr. 6.3: Chromatografický záznam analýzy 8 mastných kyselin s vnitřním standardem ve formě ECF derivátů na koloně VARIAN Factor Four, VF-17ms. Experimentální podmínky jsou uvedeny v kapitole 5. 9.

Obr. 6.4: Chromatogram mastných kyselin (obr. 6.3) s vyhodnocením jednotlivých píků: 1-C12:0, 2-C14:0, 3-Eth (IS), 4-C16:0, 5-C18:0, 6-C18:2n6, 7-C18:3n3, 8-C20:4n6, 9-C22:6n3

Mastná kyselina	Zkratka	RT	Fragmente	ové ionty (% četnosti)
Kys. laurová	C12:0	7,13	88 (100)	101 (54)	55 (27)
Kys. myristová	C14:0	8,52	88 (100)	101 (60)	43 (27)
Ethionin - IS	Eth	9,74	75 (100)	129 (68)	175 (60)
Kys. palmitová	C16:0	9,8	88 (100)	101 (62)	43 (31)
Kys. stearová	C18:0	10,97	88 (100)	101 (68)	43 (33)
Kys. linolová	C18:2n6	11,05	67 (100)	81 (84)	95 (62)
Kys. linolenová	C18:3n3	11,22	79 (100)	67 (59)	95 (54)
Kys. arachidonová	C20:4n6	12,13	79 (100)	91 (77)	80 (61)
Kys. cervonová	C22:6n3	13,32	79 (100)	91 (90)	67 (53)

Tab. 6. b: Hmoty fragmentových iontů s jejich četností a retenční data ECF derivátů mastných kyselin.

Obr. 6.5: Chromatografický záznam analýzy ketokyselin a hydroxykyselin s vnitřním standardem ve formě ECF derivátů na koloně VARIAN Factor Four, VF-17ms. Experimentální podmínky jsou uvedeny v kapitole 5. 9.

Obr. 6.6: Chromatogram organických kyselin (obr. 6.5) s vyhodnocením jednotlivých píků: 1-MMA, 2-2HP, 3-2HB, 4-Eth (IS), 5-VMA, 6-HIAA

Ketokyselina/					
hydroxykyselina	Zkratka	RT	Fragment	ové ionty (%	o četnosti)
Kys.methylmalonová	MMA	3,66	129 (100)	74 (84)	29 (50)
Kys.mléčná	2HP	4,65	45 (100)	73 (10)	43 (8)
Kys.2-hydroxymáselná	2HB	5,31	59 (100)	41 (9)	131 (6)
Ethionin - IS	Eth	9,74	75 (100)	129 (68)	175 (59)
Kys.vanilmandlová	VMA	13,8	153 (100)	151 (53)	93 (45)
Kys.5-hydroxyindolyloctová	HIAA	14,8	146 (100)	174 (27)	145 (18)

Tab. 6. c: Hmoty fragmentových iontů s jejich četností a retenční data ECF derivátů keto- /hydroxy- kyselin.

Obr. 6.7: Chromatografický záznam analýzy dikarboxylových kyselin a HA s vnitřním standardem ve formě ECF derivátů na koloně VARIAN Factor Four, VF-17ms. Experimentální podmínky jsou uvedeny v kapitole 5. 9.

Obr. 6.8: Chromatogram dikarboxylových kyselin a HA (obr. 6.7) s vyhodnocením jednotlivých píků: 1-C3, 2-C4, 3-C5, 4-C6, 5-C7, 6-C8, 7-C9, 8-C10, 9-Eth (IS), 10-HA

Dikarboxylové kys.					
+ HA	Zkratka	RT	Fragment	ové ionty (%	6 četnosti)
Propandiová kys.	C3	3,55	115 (100)	133 (68)	43 (57)
Butandiová kys.	C4	4,57	101 (100)	129 (55)	128 (18)
Pentandiová kys.	C5	5,42	143 (100)	114 (79)	115 (70)
Hexandiová kys.	C6	6,33	111 (100)	157 (70)	55 (68)
Heptandiová kys.	C7	7,1	125 (100)	101 (71)	129 (61)
Oktandiová kys.	C8	7,84	143 (100)	138 (85)	185 (85)
Nonandiová kys.	C9	8,53	55 (100)	152 (99)	199 (77)
Dekandiová kys.	C10	9,18	55 (100)	97 (79)	125 (78)
Ethionin - IS	Eth	9,74	75 (100)	129 (68)	175 (60)
Hippurová kys.	HA	10,07	105 (100)	77 (32)	134 (24)

Tab. 6. d: Hmoty fragmentových iontů s jejich četností a retenční data ECF derivátů dikarboxylových kyselin a HA.

6.1.2. Analýza organických kyselin v biologickém materiálu

Dále byla provedena identifikace a stanovení ECF derivátů organických kyselin v modelových vzorcích séra a plasmy. Tím byla ověřena použitelnost ECF derivátů k analýze organických kyselin při jejich stanovení v biologických vzorcích technikou GC/MS.

K analýze organických kyselin byl k dispozici jeden vzorek krevního séra a jeden vzorek krevní plasmy. Chromatografický záznam krevního séra je na Obr. 6. 11 a záznam krevní plasmy na Obr. 6. 9.

Příprava biologického materiálu k analýze byla provedena podle postupu uvedeného v kapitole 5. 6. A analýza byla prováděna na stejné sestavě systému GC/MS za naprosto stejných experimentálních podmínek jako tomu bylo při analýze standardních směsí.

Identifikace organických kyselin v biologickém materiálu byla provedena pomocí retenčních časů uvedených v Tab. 6. a, 6. b, 6. c, 6. d a porovnáním nalezených spekter s naměřenými hmotnostními spektry standardů, které jsou uvedeny v příloze č. 1

Přehled identifikovaných organických kyselin ve vzorcích séra a plasmy technikou GC/MS jsou uvedeny v Tab. 6.e a Tab. 6.f.

6.1.2.1. Analýza organických kyselin v plasmě

Obr. 6.9: Chromatografický záznam analýzy plasmy s vnitřním standardem ve formě ECF derivátů na koloně VARIAN Factor Four, VF-17ms. Experimentální podmínky jsou uvedeny v kapitole 5. 9.

Obr. 6.10: Chromatogram plasmy (obr. 6.9) s vyhodnocením jednotlivých píků: 1-2HP, 2-2HB, 3-Ala, 4-Gly, 5-Val, 6-Leu, 7-Ile, 8-C12:0, 9-Thr + Ser, 10-Pro, 11-Asn, 12-C14:0, 13-Met, 14-Glu, 15-Eth (IS), 16-C16:0, 17-Phe, 18-Cys, 19-C18:0, 20-C18:2n6, 21-C18:3n3, 22-Gln, 23-Orn, 24-C20:4n6, 25-Lys, 26-His, 27-C22:6n3, 28-Tyr, 29-Trp, 30-CC

Organická kyselina	Zkratka	RT
Kys. máselná	2HP	4.67
2-hydroxymáselná kys.	2HB	5.30
Alanin	Ala	5.45
Glycin	Gly	5.71
Valin	Val	6.37
Leucin	Leu	6.94
Isoleucin	lle	7.06
Laurová kys.	C12:0	7.13
Threonin	Thr	7.58
Serin	Ser	7,58
Prolin	Pro	7.81
Asparagin	Asn	8.03
Myristová kys.	C14:0	8.52
Methionin	Met	9.36
Kys. glutamová	Glu	9.63
Ethionin - IS	Eth	9.75
Palmitová kys.	C16:0	9.83
Phenylalanin	Phe	10.18
Cystein	Cys	10.54
Stearová kys.	C18:0	10.99
Linolová kys.	C18:2n6	11.09
Linolenová kys.	C18:3n3	11.22
Glutamin	Gln	11.57
Ornitin	Orn	11.97
Arachidonová kys.	C20:4n6	12.15
Lysin	Lys	12.57
Histidin	His	13.05
Cervonová kys.	C22:6n3	13.33
Tyrosin	Tyr	13.63
Tryptophan	Trp	14.68
Cystin	CC	15.65

Tab. 6. e: Metabolity analyzované v plasmě technikou GC/MS s jejich retenčními časy.

6.1.2.2. Analýza organických kyselin v krevním séru

Obr. 6.11: Chromatografický záznam analýzy krevního séra s vnitřním standardem ve formě ECF derivátů na koloně VARIAN Factor Four, VF-17ms.

Experimentální podmínky jsou uvedeny v kapitole 5.9.

Obr. 6.12: Chromatogram krevního séra (obr. 6.11) s vyhodnocením jednotlivých píků: 1-2HP, 2-2HB, 3-Ala, 4-Gly, 5-Val, 6-Leu, 7-Ile, 8-C12:0, 9-Thr + Ser, 10-Pro, 11-Asn, 12-C14:0, 13-Asp, 14-Met, 15-Glu, 16-Eth (IS), 17-C16:0, 18-Phe, 19-Cys, 20-C18:0, 21-C18:2n6, 22-C18:3n3, 23-Gln, 24-Orn, 25-C20:4n6, 26-Lys, 27-His, 28-C22:6n3, 29-Tyr, 30-Trp, 31-CC

Organická kyselina	Zkratka	RT
Máselná kys.	2HP	4.67
2-hydroxymáselná kys.	2HB	5.30
Alanin	Ala	5.45
Glycin	Gly	5.71
Valin	Val	6.37
Leucin	Leu	6.94
Isoleucin	lle	7.06
Laurová kys.	C12:0	7.13
Threonin	Thr	7.58
Serin	Ser	7.58
Prolin	Pro	7.8
Asparagin	Asn	8.03
Myristová kys.	C14:0	8.52
Asparagová kys.	Asp	8.79
Methionin	Met	9.37
Glutamová kys.	Glu	9.63
Ethionin - IS	Eth	9.75
Palmitová kys.	C16:0	9.83
Phenylalanin	Phe	10.18
Cystein	Cys	10.54
Stearová kys.	C18:0	10.99
Linolová kys.	C18:2n6	11.09
Linolenová kys.	C18:3n3	11.22
Glutamin	Gln	11.56
Ornitin	Orn	11.97
Arachidonová kys.	C20:4n6	12.14
Lysin	Lys	12.57
Histidin	His	13.05
Cervonová kys.	C22:6n3	13.32
Tyrosin	Tyr	13.61
Tryptophan	Trp	14.67
Cystin	CC	15.65

Tab. 6. f: Metabolity analyzované v séru technikou GC/MS s jejich retenčními časy.

Obr. 6.13: Porovnání chromatografického záznamu z analýzy plasmy (horní záznam) a záznamu z analýzy krevního séra (dolní záznam)

6.1.3. Slepá zkouška

Příprava slepé zkoušky byla provedena podle postupu uvedeného v kapitole 5. 7. Byly změřeny hmotnostní spektra ethioninu a kys. 2-phenylmáselné. Analýza byla prováděna na stejné sestavě systému GC/MS za naprosto stejných experimentálních podmínek jako tomu bylo při analýze standardních směsí a biologického materiálu.

Jako vnitřního standardu při analýze organických kyselin ve standardních směsí a v biologickém materiálu byl použit pouze ethionin (Eth).

Obr. 6. 14: Chromatografický záznam slepé zkoušky s vnitřním standardem ve formě ECF derivátu na koloně VARIAN Factor Four, VF-17ms. Experimentální podmínky jsou uvedeny v kapitole 5. 9.

Obr. 6. 15: Chromatogram slepé zkoušky (Obr. 6. 14) s vyhodnocením jednotlivých píků: 1-2PBA, 2-Eth

6.2. Diskuse

Vlastní příprava vzorků je poměrně jednoduchá, probíhá ve vodném prostředí, za laboratorní teploty, používané chemikálie jsou levné a běžně dostupné a vzorek je připraven k analýze během několika minut. Další výhodou použitého způsobu derivatizace je v možnosti současné analýzy extraktu technikou HPLC/MS. ECF deriváty AA, FA, diCA, KA a OHA vykazují dobré chromatografické vlastnosti. Pouze u dvojice aminokyselin serinu a threoninu docházelo ke chvostování píků, což stěžovalo jejich identifikaci.

Předností použité techniky GC/MS je její krátká doba analýzy, stanovení organických kyselin v tělních tekutinách trvá přibližně 20 minut. Použitý postup derivatizace s ethylchlormravenčanem v kombinaci s technikou GC/MS umožňuje analýzu rozsáhlého souboru organických kyselin. Proto bylo prvotním úkolem zmapovat přítomnost zastoupených látek v krevním séru a plasmě. Jednotlivé metabolity nalezené v tělních tekutinách jsou shrnuty v Tab. 6. e a Tab. 6. f.

První hypotéza práce (Nová metoda může významně přispět ke zvládnutí komplexní analýzy organických kyselin v tělních tekutinách) byla potvrzena. V tělních tekutinách byly jednou reakcí zderivatizovány aminokyseliny, ketokyseliny, hydroxykyseliny, dikarboxylové kyseliny a mastné kyseliny.

Druhá hypotéza práce (Krevní sérum a plasma jsou velmi podobné biologické matrice a proto se předpokládá, že se nebude výrazně lišit zastoupení jednotlivých organických kyselin) byla též potvrzena. Profil organických kyselin v plasmě a séru je téměř totožný, pouze kyselina asparagová byla nalezena jen v séru. Vizuálním porovnáním chromatografických záznamů plasmy a séra byl zjištěn v séru několikanásobně nižší obsah kyseliny cervonové (C22:6n3). Z dikarboxylových kyselin byla v obou matricích nalezena pouze ve stopách kyselina butandiová.

56

7. ZÁVĚR

Problematice analýzy organických kyselin je dnes stále věnována velká pozornost. Zejména výzkumům v oblasti nových technologií, derivatizačních činidel a derivatizačních postupů.

V této práci byla vypracována metodika pro rychlé stanovení organických kyselin v tělních tekutinách pomocí GC/MS. Pomocí této techniky lze analyzovat velké množství organických kyselin v minimálním objemu tělní tekutiny.

Byla provedena derivatizace souboru několika desítek organických kyselin ethylchlormravenčanem ve vodném médiu. Reakce probíhá rychle a za laboratorní teploty.

Ve vzorcích krevního séra a plasmy byly pomocí použitých metod, retenčních dat a EI hmotnostních spekter identifikovány desítky organických kyselin.

Pokusy provedené v této práci prokázaly, že derivatizace pomocí ethylchlormravenčanů ve vodném prostředí je poměrně jednoduchou, rychlou a slibnou metodou pro analýzu organických kyselin.

Pro možné uplatnění metodiky v klinické diagnostice je nezbytný další experimentální výzkum, aby bylo možno vymezit přednosti a omezení tohoto nového metodického přístupu.

8. SEZNAM POUŽITÝCH ZKRATEK

AA	aminokyseliny
DMP	dědičná metabolická porucha
FA	mastné kyseliny
diCA	dikarboxylové kyseliny
KA	ketokyseliny
OHA	hydroxykyseliny
MS	hmotnostní spektrometr
SPE	extrakce tuhou fází
LLE	extrakce kapalina-kapalina
CE	kapilární elektroforéza
LIF	laserem indukovaná fluorescence
CE/MS	kapilární elektroforéza/hmotnostní spektrometrie
HPLC	vysokoúčinná kapalinová chromatografie
IEC	iontově výměnná chromatografie
RP-HPLC	vysokoúčinná kapalinová chromatografie na reverzní fázi
MS/MS	tandemová hmotnostní spektrometrie
UPLC	ultravysokotlaká kapalinová chromatografie
GC	plynová chromatografie
FID	plamenově ionizační detektor
GC/MS	plynová chromatografie/hmotnostní spektrometrie
RCF	chlormravenčany
PYR	pyridin
ECF	ethylchlormravenčany
IC8	isooktan
Eth	ethionin
Kys	kyselina
IS	interní standard

9. SEZNAM POUŽITÉ LITERATURY

- **Boulat O.**, et al. 2001. Separation of free AA in human plasma by CE with laser induced fluorescence: potential for emergency diagnosis of inborn errors of metabolism. Journal of Chromatography B 754: 217-228
- Böhm S., Smrčková-Voltrová S. 1995. Strukturní analýza organických sloučenin.
 Fakulta chemické technologie VŠCHT Praha. ISBN 80-7080-235-9. P. s. 152
- **Carpenter K. H., Wiley V.** 2002. Application of tandem mass spektrometry to biochemical genetics and newborn screening. Clinica chimica acta 322: 1-10
- **Chang M. S., Kim E. J., El-Shourbagy T. A.** 2007. Evaluation of 384-well formatted sample preparation technologies for regulated bioanalysis. Rapid Communications in Mass Spectrometry 21: 64-72
- **Churáček J.**, et al. 1991. Plynová a kapalinová chromatografie. Vysoká škola chemicko-technologická v Pardubicích, katedra analytické chemie. P.s. 295
- Čermáková M., Štěpánová I. 2003. Klinická biochemie I. díl. Institut pro další vzdělávání pracovníků ve zdravotnictví v Brně. ISBN 80-7013-372-4. P.s. 120
- Červinka O., et al. 1987. Chemie organických sloučenin (2). SNTL-Nakladatelství technické literatury, Praha. 04-630-87. P.s. 1056
- **Davey J. F., Ersser R. S.** 1990. AA analysis of physiological fluids by HPLC with phenylisothiocyanate derivatization and comparison with ion-exchange chromatography. Journal of Chromatography: 9-23
- **Doležalová V.**, et al. 1995. Laboratorní technika v klinické biochemii a toxikologii. Institut pro další vzdělávání pracovníků ve zdravotnictví v Brně. ISBN 80-7013-198-5. P.s. 286
- **Dostál J., Paulová H., Slanina J., Táborská E.** 2005. Biochemie pro bakaláře. Masarykova univerzita v Brně. ISBN 80-210-3232-4. P.s. 174

Dylevský I. 2000. Somatologie. EVAPA, Olomouc. ISBN 80-86297-05-5. P.s. 480

- Feste A. S. 1992. RP-HPLC of phenylthiocarbamyl AA derivatives of physiological AA. Journal of Chromatography. 574: 23-34
- Freeto S. M., et. al. 2006. A rapid UPLC-MS/MS method for the determination of specific AA associated with maple syrup urine disease and phenylketonuria. Clinical Chemistry 52: 34

Grumbach E. S., Wheat T. E., Mazuro J. R. 2005. Developing columns for UPLC:

Design considerations and recent developments. LC GC North America 40-44

- Grumbach E. S., Wheat T. E., Mazuro J. R. 2006. Enhanced retention of polar analytes utilizing novel 1.7 mu m UPLC (TM) particles for hydrophilic interaction chromatography. LC GC North America 70-71
- Hušek P. 2005. Quantitation of AA as chloroformates A return to GC, in: Quantitation of AA and Amines by Chromatography, ed. I. Molnár-Perl, Elsevier, p. 2-38
- Hušek P., Šimek P. 2006. Alkyl chloroformates in sample derivatization strategies for GC analysis. Current Pharmaceutical Analysis 2: 23-43
- Marioli J. M., Sereno L. E. 1996. Electrochemical detection of underivatized AA with a Ni-Cr alloy electrode. Journal of Liquid Chromatography and Related Technologies. 19: 2505-2515
- Murray R. K., Granner D. K., Mayes P. A., Rodwell V. W. 2002. Harperova biochemie. a LANGE medical book. ISBN 80-7319-013-3. P.s. 872
- Nemec R. 1988. Vybrané laboratorní metody. Avicenum, zdravotnické nakladatelství, Praha. 08-038-88. P.s 469
- Odstrčil J. 1995. Biochemie. Učební text pro střední zdravotnické školy.Vydavatelství idvpz Brno. ISBN 80-7013-190-X. P.s. 161
- **Pennanec R., Petritis K., Dreux M.** 2004. A validated analysis of underivatized AA with evaporative light-scattering detection. LC GC Europe. 37-38
- **Petritis K. N.**, et. Al. 1999. Ion-pair reversed-phase liquid chromatography for determination of polar underivatized AA using perfluorinated carboxylic acids as ion pairing agent. Journal of Chromatography A 833:147-155
- Petritis K., et. al. 2000. Ion-pair chromatography on a porous graphitic carbon stationary phase for the analysis of twenty underivatized protein amino acids. Journal of Chromatography A. 870: 245-254
- **Petritis K., Elfakir C., Dreux M.** 2002. A comparative study of commercial LC detectors for the analysis of underivatized AA. Journal of Chromatography A 961: 9-21
- **Petritis K.**, et. al. 2004. Validation of an ion-interaction chromatography analysis of underivatized AA in commercial preparation using evaporative light scattering detection. Chromatographia. 60: 293-298
- Piraud M., et al. 2003. ESI-MS/MS analysis of underivatised AA: a new tool for the diagnosis of inherited disorders of AA metabolism. Fragmentation study of 79

molecules of biological interest in positive and negative ionisation mode. Rapid Communications in Mass Spectrometry. 17: 1297-1311

- Piraud M. et al. 2005. A new RP-LC/MC/MC method for analysis of underivatised AA: evaluation for the diagnosis and the management of inherited disorders of AA metabolism. Rapid Communications in Mass Spectrometry. 19: 3287-3297
- Presits P., Molnar-Perl I. 2003. HPLC of tryptophan and its metabolites: AsOPA derivatives and on the basis of their UV and fluorescence spectra, simultaneously. Developments in tryptophan and serotonin metabolism advances in experimental medicine and biology 527: 695-704
- Rashed M. S. 2001. Clinical applications of tandem MS: ten years of diagnosis and screening for inherited metabolit diseases. Journal of Chromatography B. 758: 27-48
- **Soga T., Heiger D. N.** 2000. AA analysis by CE electrospray ionization MS. Analytical Chemistry. 72: 1236-1241
- Šimek P., Hušek P., Tvrzička E. 2002. Simple and rapid procedure for the determination of individual free fatty acids in serum. Analytica Chimica Acta 465: 433-439
- Simek P., Hušek P. 2003. Simple plasma work-up for a fast chromatographic analysis of homocysteine, Cys, Met and aromatic AA. Journal of Chromatography B 789: 311-322
- Šimek P., Hušek P., Matucha P. 2003. Smooth esterification of Di- and tricarboxylic acids with methyl and ethyl chloroformates in GC profiling of urinary acidic metabolites. Chromatographia 58: 623-630
- Štulík K., et al. 2004. Analytické separační metody. Karolinum UK Praha. ISBN 80-246-0852-9. P.s. 264
- Teerlink T., Vanleeuwen P. A. M., Houdijk A. 1994. Plasma AA determined by LC within 17 minutes. Clinical Chemistry. 40: 245-249
- Walker V., Mills G. A. 1995. Quantitative methods for AA analysis in biological fluids. Annals of Clinical Biochemistry. 32: 28-57

10. KLÍČOVÁ SLOVA

Chromatogram Derivatizace Hmotnostní spektrometrie Organické kyseliny Plynová chromatografie

11.PŘÍLOHY

- 1. Hmotnostní spektra jednotlivých organických kyselin
- 2. Struktury studovaných organických kyselin a jejich ECF derivátů

11.1. Příloha 1

11.1.1. Hmotnostní spektra aminokyselin

Alanin

Glycin

Valin

OAE15_23AA #1317-1320 RT: 6,35-6,36 AV: 4 SB: 55 6,41-6,50 , 6,23-6,31 NL: 5,43E6 T: + c Full ms [40,00-400,00]

Leucin

OAE15_23AA #1489-1495 RT: 6,92-6,94 AV: 7 SB: 80 6,97-7,02 , 6,67-6,87 NL: 4,61E6 T: + c Full ms [40,00-400,00]

Isoleucin

OAE15_23AA #1529-1532 RT: 7,06-7,07 AV: 4 SB: 64 6,91-7,01 , 7,09-7,20 NL: 3,77E6 T: + c Full ms [40,00-400,00]

Threonin, serin

Prolin

OAE15_23AA #1750-1755 RT: 7,79-7,80 AV: 6 SB: 80 7,84-7,93 , 7,57-7,74 NL: 6,30E6 T: + c Full ms [40,00-400,00]

Asparagin

Kys. asparagová

OAE15_23AA #2047-2054 RT: 8,77-8,79 AV: 8 SB: 97 8,51-8,72 , 8,84-8,94 NL: 3,84E6 T: + c Full ms [40,00-400,00]

Methionin

Phenylalanin

OAE15_23AA #2469-2475 RT: 10,17-10,19 AV: 7 SB: 88 9,98-10,13 , 10,26-10,39 NL: 3,56E6 T: + c Full ms [40,00-400,00]

Cystein

OAE15_23AA #2582-2585 RT: 10,54-10,55 AV: 4 SB: 58 10,37-10,49 , 10,58-10,65 NL: 2,95E6 T: + c Full ms [40,00-400,00]

Homocystein

Glutamin

OAE15_23AA #2874-2879 RT: 11,51-11,52 AV: 6 SB: 75 11,55-11,65 , 11,35-11,48 NL: 1,06E6 T: + c Full ms [40,00-400,00] 84

Ornithin

Lysin

OAE15_23AA #3187-3192 RT: 12,54-12,56 AV: 6 SB: 168 12,62-12,74 , 12,06-12,48 NL: 5,73E6 T: + c Full ms [40,00-400,00]

Histidin

Tyrosin

OAE15_23AA #3508-3517 RT: 13,60-13,63 AV: 10 SB: 192 13,69-13,94 , 13,16-13,53 NL: 9,07E6 T: + c Full ms [40,00-400,00]

Tryptophan

OAE15_23AA #3828-3836 RT: 14,66-14,69 AV: 9 SB: 86 14,73-14,85 , 14,43-14,60 NL: 1,51E7 T: + c Full ms [40,00-400,00]

Cystin

OAE15_23AA #4123-4130 RT: 15,64-15,66 AV: 8 SB: 101 15,70-15,83 , 15,39-15,58 NL: 6,17E5 T: + c Full ms [40,00-400,00]

11.1.2. Hmotnostní spektra mastných kyselin

C12:0

OAE32_8FA #1963-1973 RT: 8,49-8,52 AV: 11 SB: 315 8,60-9,01 , 7,78-8,40 NL: 3,48E6 T: + c Full ms [40,00-400,00]

C16:0

C18:0

OAE32_8FA #2704-2713 RT: 10,94-10,97 AV: 10 SB: 238 10,38-10,87 , 11,01-11,31 NL: 3,16E6 T: + c Full ms [40,00-400,00]

C18:2n6

C18:3n3

OAE32_8FA #2784-2788 RT: 11,20-11,22 AV: 5 SB: 163 10,79-11,13 , 11,29-11,48 NL: 2,82E6 T: + c Full ms [40,00-400,00]

C20:4n6

C22:6n3

OAE32_BFA #3419-3426 RT: 13,30-13,33 AV: 8 SB: 179 13,36-13,58 , 12,89-13,26 NL: 2,87E6 T: + c Full ms [40,00-400,00]

11.1.3. Hmotnostní spektra hydroxy- a keto- kyselin

MMA

OAE31_KOA #796-804 RT: 4,63-4,66 AV: 9 SB: 173 4,70-4,96 , 4,25-4,56 NL: 2,96E6 T: + c Full ms [40,00-400,00]

2HB

OAE31_KOA #3553-3558 RT: 13,75-13,76 AV: 6 SB: 145 13,81-14,03 , 13,45-13,70 NL: 3,51E6 T: + c Full ms [40,00-400,00]

HIAA

Hmotnostní spektra dikarboxylových kyselin 11.1.4.

OAE33_diCA #1306-1312 RT: 6,32-6,34 AV: 7 SB: 108 6,01-6,27 , 6,39-6,48 NL: 2,62E6 T: + c Full ms [40,00-400,00]

C5

OAE33_diCA #2170-2174 RT: 9,17-9,19 AV: 5 SB: 79 9,22-9,33 ,8,99-9,14 NL: 1,95E6 T: + c Full ms [40,00-400,00] 100 - 55

C9

11.2. Příloha 2

11.2.1. Struktury AA a ECF derivátů AA

11.2.2. Struktury FA a ECF derivátů FA

11.2.3. Struktury OA a ECF derivátů OA

11.2.4. Struktury diCA a ECF derivátů diCA