$\begin{array}{c} Regulation \ factors \ of \ denitrification \ and \ their \ influence \\ on \ emissions \ of \ N_2O \ from \ pasture \ soil \end{array}$

 $\begin{array}{c} Regulační \ faktory \ denitrifikace \ a \ jejich \ vliv \ na \ emise \ N_2O \\ v \ pastevních \ půdách \end{array}$

Petr Brůček

České Budějovice

2009

Ph.D. thesis Doktorská disertační práce University of South Bohemia Faculty of Science Department of Ecosystem Biology

Mgr. Petr Brůček

 $\begin{array}{c} \mbox{Regulation factors of denitrification and their influence on} \\ \mbox{emissions of N_2O from pasture soil} \end{array}$

Ph.D. Thesis

Supervisor: prof. Ing. Miloslav Šimek, CSc.

České Budějovice

2009

Brůček, P., 2009. Regulation factors of denitrification and their influence on emissions of N_2O from pasture soil. Ph. D. Thesis, in English. - 78 p., Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.

Annotation:

Regulating factors of denitrification and their effect on emissions of N_2O from pasture soils in a cattle overwintering area were investigated. The study was based on field experiments performed at three locations along the gradient of animal impact and on laboratory experiments focused on effect of nutrients addition on N_2O emissions.

Financial support

The research was supported by the EU project MIDAIR (No EVK2-CT-2000-00096), by the Research Plans of the Institute of Soil Biology (No Z6066911 and AV0Z60660521), by research projects supported by the Czech Science Foundation (No 526/04/0325), by the Grant Agency of the Academy of Sciences of the Czech Republic (No IAA600660605) by grants of LC 06066 and by the Ministry of Education of the Czech Republic (MSM 123100004, MSM 6007665801 and 21-1072/2004).

Declaration

I declare hereby that I worked out this thesis on my own only with the use of the cited literature and other cited sources.

I declare that in accordance with the Czech legal code § 47b law No. 111/1998 in valid version I consent to the publication of my dissertation in an edition made by removing marked parts archived by Faculty of Science in an electronic way in the public access section of the STAG database run by the University of South Bohemia in České Budějovice on its web pages.

Prohlašuji, že jsem vypracoval tuto disertační práci samostatně pouze s využitím citované literatury a pramenů uvedených v seznamu citované literatury.

Prohlašuji, že v souladu s § 47b zákona č. 111/1998 Sb. v platném znění souhlasím se zveřejněním své disertační práce, a to v úpravě vzniklé vypuštěním vyznačených částí archivovaných Přírodovědeckou fakultou elektronickou cestou ve veřejně přístupné části databáze STAG provozované Jihočeskou univerzitou v Českých Budějovicích na jejích internetových stránkách.

In České Budějovice, 20 December 2009

Petr Brůček

List of papers

Brůček, P., Šimek, M., Hynšt, J., 2009. Long-term animal impact modifies potential production of N_2O from pasture soil. Biology and Fertility of Soils 46, 27-36.

Šimek, M., **Brůček, P.,** Hynšt, J. Diurnal fluxes of CO_2 and N_2O from cattle-impacted soil and implications for greenhouse gases emission estimates over longer periods. Submitted.

Hynšt, J., Šimek, M., **Brůček, P**., 2007. Nitrous oxide emissions from cattle-impacted pasture soil amended with nitrate and glucose. Biology and Fertility of Soils 43, 853-859.

Hynšt, J., Šimek, M., **Brůček, P.,** Petersen, S. O., 2007. High fluxes but different patterns of nitrous oxide and carbon dioxide emissions from soil in a cattle overwintering area. Agriculture, Ecosystem and Environment 120, 269-279.

Šimek, M., Stevens, R.J., Laughlin, R.J., Hynšt, J., **Brůček, P.,** Čuhel, J., Pietola, L., 2006. Gaseous nitrogen losses from a grassland area used for overwintering cattle. In: Soliva, C. R., Takahashi, J., Kreuzer, M. (Eds.). Greenhouse gases and animal agriculture: an update. International Congress Series 1293, 343-346.

Šimek, M., **Brůček, P.,** Hynšt, J., Uhlířová, E., Petersen, S.O., 2006. Effects of excretal returns and soil compaction on nitrous oxide emissions from a cattle overwintering area. Agriculture, Ecosystem and Environment 112, 186-191.

Author's contribution

Petr Brůček was responsible for preparing of treatments, sampling and completion of data including preparation of the manuscripts of the papers listed above.

Co-author's agreement

We hereby declare that Petr Brůček had a major contribution of first paper from the list of papers. His contribution to other papers listed, especially to the second and the last one, was also significant.

prof. Ing. Miloslav Šimek, CSc.

Ing. Jaroslav Hynšt, Ph.D.

Acknowledgements

My first truly thanks belong to Miloslav Šimek, my supervisor, for vast support, guidance and patience during my long studies. Next I would like thanks to Jaroslav Hynšt, my colleague and fellow, who collaborate, discussed and encouraged me for long time. I am grateful to Hana Šantrůčková, head of the Department of Ecosystem Biology, Faculty of Science, University of South Bohemia and many people at the Institute of Soil Biology, BC AS CR, v.v.i. Many thanks to Linda Jíšová, Veronika Šlajchrtová, Eliška Zadáková, Monika Šourková a Ivana Fialová for laboratory works. Likewise I would like to thank my other colleagues as Jiří Čuhel, Tomáš Picek and Eva Uhlířová. My special thanks belong Kamír family for providing their winter pasture for our research and their support of the field work.

And last, but not least, I have to mention big thanks to my family for unfailing support.

Contents

Regulation factors of denitrification and their influence on emissions of N_2O from pasture soil

Paper I Long-term animal impact modifies potential production of N₂O from pasture soil (Paper I: Brůček, P. Šimek, M., Hynšt, J.: Long-term animal impact modifies potential production of N₂O from pasture soil. Biology and Fertility of Soils 46, 2009, 27-36)

Paper II Nitrous oxide emissions from cattle-impacted pasture soil amended with nitrate and glucose

(Paper II: Hynšt, J., Brůček, P., Šimek, M., 2007. Nitrous oxide emissions from cattleimpacted pasture soil amended with nitrate and glucose. Biology and Fertility of Soils 43, 853-859)

22

1

Paper III Gaseous nitrogen losses from a grassland area used for overwintering cattle (Paper III: Šimek, M., Stevens, R.J., Laughlin, R.J., Hynšt, J., Brůček, P., Čuhel, J., Pietola, L. Gaseous nitrogen losses from a grassland area used for overwintering cattle. In: International Congress Series, GGAA 2005, 1293, pp 343-346)

29

33

Paper IV Diurnal fluxes of CO₂ and N₂O from cattle-impacted soil and implications for greenhouse gases emission estimates over longer periods (Paper IV: Šimek, M., Brůček, P., Hynšt, J. Diurnal fluxes of CO₂ and N₂O from cattle-impacted soil and implications for greenhouse gases emission estimates over longer periods. Submitted)

Paper V High fluxes but different patterns of nitrous oxide and carbon dioxide emissions from soil in a cattle overwintering area (Paper V: Hynšt, J., Šimek, M., Brůček, P., Petersen, S.O.: High fluxes but different patterns of nitrous oxide and carbon dioxide emissions from soil in a cattle overwintering area. Agriculture, Ecosystem and Environment, 120, 2007, 269-279) 59

Paper VI Effects of excretal returns and soil compaction on nitrous oxide emissions from a cattle overwintering area (Paper VI: Šimek, M., Brůček, P., Hynšt, J., Uhlířová, E., Petersen, S.O.: Effects of excretal returns and soil compaction on nitrous oxide emissions from a cattle overwintering area. Agriculture, Ecosystem and Environment 112, 2006, 186-191) 70

List of publications

Curriculum vitae

78

76

Regulation factors of denitrification and their influence on emissions of N_2O from pasture soil

General introduction

Nitrous oxide (N₂O) belongs to important trace gases in the atmosphere. Similarly to other atmospheric gases, continual exchange of N₂O between atmosphere and soil takes place. Soil is both the source and the sink of N₂O and it is produced (and consumed) during biological processes of nitrogen (N) transformations. These processes include especially nitrification and denitrification. Intensive human activity that is responsible for changes in natural and anthropogenic ecosystems strongly affects also transformations of nutrients in soil. Besides other effects, it increased significantly emissions of N₂O and consequently atmospheric concentration of N₂O. Nitrous oxide is not toxic and it is relatively inert, but it plays important role in atmospheric chemistry participating in reactions which are responsible for destruction of atmospheric ozone. And finally it belongs to so called greenhouse gases, which cause global warming of the atmosphere. Although the relationship between concentration of N_2O in the atmosphere and global temperature is not simple, its existence is supported by data on concentration of N_2O in the air entrapped in Antarctic ice – samples from layers from warmer periods contained higher amount of N₂O in comparison with layers deposited in colder conditions (Smith 1997).

Production of N_2O is one of the processes of nitrogen losses from the soil and it is accompanied by other undesirable processes (nitrate leaching, production of NO) that also have serious environmental impacts (excessive input of N into natural ecosystems, high concentration of nitrate in water etc.). These negative effects make N_2O emissions an important process that has been intensively studied in recent decades. However, amount of N_2O emitted from the soil and factors affecting N_2O emissions are not yet fully clear.

Importance of pastures as a source of N_2O is supported by numerous publications (e.g. Christensen 1983; Jarvis, Pain 1997). High amount of available carbon, nitrogen and other nutrients from animal excrements support intensive microbial transformations of N including N_2O producing processes. Thus, pasture soils represent a suitable environment for study of factors affecting production of N_2O in and emissions from the soil. Improved knowledge of processes producing N_2O may contribute to better management of soils with respect to environmental impacts.

Processes producing N₂O in soil

Nitrous oxide is produced during redox transformations of N in soil. The main processes of its production are denitrification and nitrification (Skiba et al.

1992; Bremner 1997), assimilative and dissimilative reduction of nitrate (NO_3^-) to ammonium (NH_3) and biological fixation of atmospheric N_2 .

Denitrification

Denitrification is process of NO_3^- reduction to N_2 through NO and N_2O as intermediate products. It may proceed as chemical reaction called chemodenitrification or biological process of anaerobic respiration that uses NO_3^- as electron acceptor instead of oxygen (O₂). Biological denitrification is usually mentioned to be main process of nitrate reduction while importance of chemodenitrification is low (Paul, Clark 1996; Killham 1994).

Biological denitrification needs specific conditions:

1) decreased concentration of O_2 - molecular O_2 is better electron acceptor than NO_3^- and its presence in soil inhibits denitrification; the highest production of N_2 and N_2O takes place when pores are filled with water, at low porosity or in conditions of O_2 exhaustion by intensive respiration,

2) presence of sufficient amount of NO_3^- - it is produced through mineralization and nitrification of organic N, in agricultural soils it is often added in the form of mineral or organic fertilizers,

3) source of available C – for example in the form of dead plant tissues, dead microbial biomass, organic fertilizers.

Denitrification is natural process that returns N, previously taken from the atmosphere as N_2 during biological fixation, back to the atmosphere. Final product of the process is N_2 , but reduction is often imperfect and significant amount of N_2O is released. Total amount and ratio of these gaseous products are variable and it is regulated by many factors (Paul, Clark 1996).

Denitrification is the sequence of enzymatic reactions converting oxidized nitrogen species to most reduced one:

$$NO_3 \rightarrow NO_2 \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

Individual steps of denitrification are regulated by environmental conditions. Production of N₂O is limited by the rate of the last reaction – reduction of N₂O to N₂. When reduction of NO₃⁻ and NO₂⁻ proceeds in higher rate than reduction of N₂O, accumulation of N₂O takes place. The rate of reduction of N₂O to N₂ is affected especially by content of available C, ratio C : NO₃⁻ and concentration of O₂ in soil air (Coyne 1999). At lower ratio C : NO₃⁻, reducing agent becomes limiting and sequence of reactions ends by release of N₂O. In contrast, higher ratio enables perfect reduction to N₂ (in certain conditions, soil can consume and reduce atmospheric N₂O) (Mosier, Schimel 1991; Simarmata et al. 1993). Majority of typical bacterial denitrifiers has ability of aerobic respiration (O₂ is better oxidant than NO₃⁻); therefore the increasing content of O₂ in soil decreases ratio N₂:N₂O and inhibits denitrification. Generally, denitrifying enzymes are activated in the following order: NO_3^- - reductase, NO_2^- - reductase, N_2O – reductase, and inhibited in the reverse order. It means that resulting proportion of N_2O is affected by ratio and also duration of suggested regulating factors (Dendooven et al. 1997; Priemé and Christensen 1991).

Nitrification

Nitrification is another important source of N_2O in soil. Nitrification is microbial oxidation of NH_4^+ to NO_3^- by O_2 . It proceeds in two steps:

- 1st phase (nitritation) - NH₄⁺ is oxidized to NO₂⁻

- 2^{nd} phase (nitratation) - NO₂ is further oxidized to NO₃

During both steps, N_2O may be released as by-product. Significance of nitrification as N_2O producing process was documented for example in experiments where soil fertilized by urea or $(NH_4)_2SO_4$ produced higher amount of N_2O than soil fertilized by NO_3^- (Bremner 1997).

There are several possibilities, how nitrification may contribute to N_2O production:

- N₂O is produced during oxidation of NH₄⁺ to NO₃⁻

- nitrification produces NO3⁻ that is further denitrified

- the 2^{nd} phase of nitrification (nitratation) is more sensitive to environmental conditions than the 1^{st} one (nitritation). In stressful conditions nitratation may be stopped and NO₂⁻ accumulates that is reduced to N₂O. It may be the case in extreme environment, for example in urine patches in pastures where toxic effect of high concentration of NH₄⁺ on nitrifiers takes place (Oenema et al. 1997),

- denitrifying nitrification - NO_2^- is utilized for oxidation of NH_4^+ (Nielsen et al. 1996).

Factors affecting production of N₂O

Content and form of N in soil

Most of N₂O in soil is produced from NO₃⁻ and NO₂⁻ during denitrification or from NH₄⁺ during nitrification. In soils with intensive N transformations, most of NH₄⁺ released through mineralization is oxidized to NO₃⁻. Ammonium N only accumulates at low temperatures (Killham 1994) and during dry periods when activity of nitrifiers is limited (Paul, Clark 1996). Content of NO₂⁻ in soil is usually low and it accumulates only in extreme conditions. Soils where NH₄⁺ form of N prevails have usually lower rates of N transformations and lower emissions of N oxides (Davidson, Verchot 2000).

Effect of NO₃⁻ on the rate of denitrification is not simple. At relatively low content of NO₃⁻, (for example Webster and Goulding (1989) report 2 - 5 mg N kg⁻¹) denitrification runs as zero order reaction, the rate is independent on NO₃⁻ concentration and it is limited by availability of C (Ottow et al. 1985). This finding is supported by results of field experiments where intensive denitrification was determined even at low level of soil NO₃⁻ (Teepe et al. 2000).

In contrast, relationship between NO_3^- content and production of N_2O and increased emissions of N_2O following input of fertilizer was often reported (Jarvis, Pain 1997; Christensen 1983).

Content of available C and its sources in pasture soils

Production of N_2O by respiration denitrification needs sufficient amount of organic C. Input of N in organic form usually stimulates emissions in higher rate than addition of comparable amount of N in the form of mineral fertilizer (Christensen 1983).

Carbon is not only donor of electrons during reduction of NO_3^- ; it also enables growth of microbial biomass that performs denitrification. In addition, high consumption of O_2 and production of CO_2 during periods of intensive microbial activity creates anaerobic conditions necessary for denitrification (Parkin 1987). On the other hand, increased growth of biomass also consumes mineral nitrogen.

The source of C in pasture soil may be plant residues, root exudates, organic fertilizers, excrements of animals and also dead microbial biomass. Important factor that affects availability of C in soil for microorganisms is not only quantity, but also quality of substrate, especially ratio C:N and solubility.

In different periods of the year, different sources of C in pasture ecosystems are available. In spring during periods of freezing and thawing C is released from dead microbial biomass. Therefore early spring is usually considered as typical period of increased N₂O fluxes. During vegetation, C from root exudates is utilized (Killham 1994). At the end of vegetation plant residues become the source of C that may be responsible for profound and long-term increase of N₂O emissions (Beck, Christensen 1987).

Soil water content

Very important regulation factor of denitrification is soil moisture. It affects production and emissions of N_2O through several ways. Soil water regulates soil aeration status, availability of carbon and nutrients and release of N_2O from soil. It is often expressed as water filled pore space (WFPS). It means the volume of soil pores actually filled with water. When WFPS increases, volume of air in soil decreases. At WFPS higher than 60% anaerobiosis can take place and microbes start to use other electron acceptors than O_2 . This situation provides suitable conditions for denitrification.

Water is also transporting medium for NO_3^- in soil. Up to some limit, it increases availability of NO_3^- for soil microorganisms. When water content is too high, for example after heavy rain, NO_3^- may be leached from the soil in higher rate than it is denitrified (Jarvis, Pain 1997). N₂O is also produced by nitrification that is limited by O₂ at high WFPS and proportion of N₂O from nitrification decrease at high water content. On the other hand, when content of water is too low, diffusion of substrates to microbial cells is limited and it decreases also N₂O emissions (Davidson 1993). N_2O in soil may be dissolved in soil water. It causes its storage in soil or transport through the soil (Heincke, Kaupenjohann 1999). It can be leached from the soil that causes biases in estimates of N_2O production (Rice, Rogers 1993). When N_2O is stored in soil for sufficient time, it may be reduced to N_2 (Robertson 1993; Heincke, Kaupenjohann 1999).

Not only actual water content, but also its short term changes are important driving factor for N_2O emissions. Precipitation or irrigation often stimulates denitrification and rate of N_2O production exceeds the rate of N_2O reduction to N_2 . When rapid drying takes place, denitrification stops and unreduced N_2O is released. On the other hand, the main product of denitrification may become N_2 when soil is water saturated (Priemé, Christensen 1991).

Soil aeration status and O₂ content

Nitrous oxide is produced by nitrification and denitrification. These processes have contrasting demands for aeration. Thus, the effect of aeration on emissions may be unpredictable. Production of N_2O by nitrification usually increases with increasing content of O_2 in soil. In contrast, production of N_2O by denitrification increases when diffusion of O_2 slows down. However, diffusion of produced N_2O also decreases at the same time, microbial demands for electron acceptors increases and N_2O reduction to N_2 is stimulated (Priemé, Christensen 1991). Content of molecular O_2 in soil air is important regulation factor of denitrification and on set-up of final products from denitification. Presence of O_2 prevent synthesis of denitrification enzymes. The most sensitive enzyme is enzyme responsible for alteration of N_2O to N_2 . If there are higher concentrations of O_2 , $N_2O:N_2$ ratio is raised while the rate of denitrification declines.

Rate of N_2O emissions is strongly regulated by the rate of gas exchange between soil and atmosphere. In soil, gases move especially by diffusion along the gradient of concentrations (Hillel 1998). Gases produced in soil, for example CO_2 , N_2O or CH_4 diffuse into the atmosphere, where their concentration is lower. O_2 moves in opposite direction from the atmosphere to soil. Gas exchange in soil is often impaired and soil products accumulate while O_2 content is limited.

Important factor of aeration in pasture soils is compaction of soil by animal movement and trampling. Compaction decreases volume of pores which helps to create anaerobic conditions suitable for denitrification (Oenema et al. 1997).

Aims and research questions

General hypothesis: Emissions of N_2O at overwintering area are supported by large inputs of nutrients from cattle excrements. Cattle impact not only stimulates actual emissions, but it has also long-term effect on potential production of N_2O . Besides total amount, proportions of nutrients regulate production (and consumption) of N_2O . Reduction of N_2O to N_2 is higher in soil with higher impact of cattle. Actual rates of emissions are affected by environmental conditions. We hypothesized that emissions are proportional to inputs of N. Increasing nutrient input along the gradient of cattle impact increases not only actual production of N₂O following nutrient input, but it also increases potential production of N₂O. Amount and ratio of C and NO₃⁻ amendments control both total amount and ratio of the two denitrification products, N₂O and N₂. Reduction of N₂O to N₂ is stronger in soil at the location most impacted by cattle and it decreases emissions of N₂O. Emissions are strongly controlled by temperature and physical properties of soil.

An overwintering area was selected at Borová Farm near Český Krumlov in Southern Bohemia (latitude 48°52´ N, longitude 14°13´ E), about 170 km South from Prague. The area was approximately 4 ha large, and it had been used for overwintering of about 90 cows since 1995. The animals were present on the site usually from November to May. Soon after the arrival of animals there was a visible gradient of animal impact from the most impacted areas near the animal house through much less impacted areas in the middle to almost unaffected areas at the opposite side of the overwintering area, where cattle traffic was minimal; these differences were most pronounced by the end of the winter season. Along this gradient three locations were identified, differing in the presumed rate of animal impact. These included a severely impacted location (S), with totally destroyed plant cover and surface soil, a location with moderate impact (M), where effects of trampling and disturbance of the vegetation were still visible, and a control location (C), with slight or no impact as judged from soil and vegetation.

Field and laboratory experiments were performed to determine potential production of N₂O by denitrification. These experiments were completed with laboratory determination of potential denitrification at various amounts and ratio of added C and N (Paper I). Effect of increasing input of N into soil was investigated in experiments with artificial application of different amounts of nutrients (Paper II). Ratio of denitrification products N₂ and N₂O at three locations along the gradient was determined in experiment using ¹⁵N (Paper III). The aim of experiments was to determine relationship between inputs of nitrogen and emissions of N₂O. Short-term variation of N₂O emissions was investigated in several field measurements with the aim to find whether daily changes of temperature affect N₂O emissions (Paper IV). Two year measurements of emissions and related parameters were performed on studied area aiming to estimate annual emissions of N_2O at three differently impacted soils along the gradient (Paper V). Soil properties at locations of overwintering area differently impacted by cattle were investigated. At the same time, emissions of N_2O and CO_2 were measured with the aim to relate soil parameters to the rate of emissions (Paper VI).

Results

Paper I presents results of laboratory determination of potential denitrification using various amounts and ratios of C and NO_3^- . The relationships between the level of long-term animal impact and potential production of N_2O from soil by denitrification were investigated in field and laboratory experiments. Field

measurements indicated that the production of N₂O after glucose and nitrate amendments was greater in severely and moderately impacted locations than in an unimpacted location, while differences between the severely and moderately impacted locations were not significant. In laboratory experiments, the potential production of N₂O (measured as anaerobic production of N₂O after addition of glucose and nitrate) was highest in the moderately impacted soil. Surprisingly, potential N₂O production was lower in the most impacted than in the moderately impacted soil, and the net N₂O production in the highly impacted soil was further decreased by a significant reduction of N₂O to N₂. The expected stimulating effect of an increasing ratio of glucose C : nitrate N on the reduction of N₂O to N₂ during denitrification was not confirmed. The results show that cattle increase the denitrification potential of the soil but suggest that the denitrification potential does not increase indefinitely with increasing cattle impact.

Paper II is targeted on field measurement of N_2O emissions affter application of high batch of C (glucose) and N (nitrate). The aims of this study were to: 1) experimentally quantify the relationship between mineral N input and N_2O emissions from denitrification; 2) describe the time course of N₂O fluxes resulting in N inputs; and 3) find whether there exists an upper limit of the amount of nitrogen escaping the soil in the form of N₂O. The study site was a grassland used as a cattle overwintering area. It was amended with KNO3 and glucose corresponding to 10 - 1 500 kg N and C ha⁻¹, covering the range of nutrient inputs occurring in real field conditions. Using manual permanent chambers, N₂O fluxes from the soil were monitored for several days after the amendments. Peak N₂O emissions were up to 94 mg N₂O-N m⁻² h⁻¹ 5-8 hours after amendment. No upper limit of N₂O emissions was detected as the emissions were directly related to the dose of nutrients in the whole range of amendments used, but the fluxes reflected the soil and environmental conditions, too. Thus, in 3 different experiments performed during the season, total cumulative losses of N₂O-N ranged from 0.2 to 5.6% of the applied 500 kg NO₃⁻N ha⁻¹. Splitting of high nutrient doses lowered the rate of N₂O fluxes following the first amendment, but the effect of splitting on the total amount of N_2O -N released from the soil was insignificant, as the initial lower values of emissions in the split variants were compensated for by a longer duration of gas fluxes. The results suggest that the cattle impacted soil has the potential to metabolize large inputs of mineral nitrogen over short periods (~days). Also, the emission factors for NO₃-N did not exceed values reported in literature.

Paper III describes results of field determination of emissions of N_2 and N_2O in situ in three different sites along the gradient of animal impact. The ¹⁵N gas-flux method was used to measure the emissions of N_2O and N_2 at three sites along a gradient of animal impact. Over the experimental period (72 h), the loss of NO_3^- -N as N gases was 60, 12 and 3%, and the mole fraction of N_2O was 0.04, 0.15 and 0.75 for the severe, moderate and control treatments, respectively. We hypothesize that soil pH which is enhanced in impacted sites (from 5.7 up to 7.8)

may control mole fraction of N_2O in such a way that under alkaline conditions most of the nitrogen escapes as N_2 .

Paper IV is targeted on field measurement of spatial and temporal variability of N_2O emissions. Production of both N_2O and CO_2 changed quickly over a relatively short time, but the general course of fluxes of the two gases was different. CO_2 emissions were basically controlled by temperature and most chambers showed the same trend of flux development. In contrast, emissions of N_2O were not only extremely variable, but each chamber had its own time course of emissions; therefore the relationship between N_2O fluxes and temperature was far more complicated. According to our results, we strongly recommend detailed investigations including frequent emission measurements in periods of high gas fluxes as the way of more precise estimations of gas emissions over longer periods.

Paper V contains results of field measurements of N₂O emissions. Emissions of N₂O and CO₂ from a cattle overwintering area were measured during two years. The measurements were performed at three sampling locations along a gradient of animal impact (severe, moderate, slight) to test the hypothesis that emissions of CO_2 and N_2O are positively related to the degree of impact. In addition to CO_2 and N₂O fluxes, soil mineral nitrogen (NH₄⁺ and NO₃⁻), pH and temperature were determined to assess possible regulations of gas fluxes. Deposition of animal excreta resulted in a significant accumulation of nitrogen in the soil during winter. Most of the N₂O was emitted during a few short periods in spring and/or in late autumn. Large N₂O fluxes were associated with recent rainfall on some sampling dates. During winter and spring, presumably in periods of increasing temperatures, intensive soil nitrogen transformations took place, followed by peaks of N₂O emissions. Maximum N₂O fluxes of up to 2.5 mg N-N₂O m⁻² h⁻¹ were usually recorded at the most impacted location near the animal house, where also the highest concentrations of mineral nitrogen occurred. However, the effect of animal impact was not simple and on some occasions N₂O emissions were higher at the moderately impacted location. The emissions of CO_2 showed a completely different pattern than those of N2O, being correlated with soil temperature; the highest emissions thus occurred in June-July, while very low fluxes were found in winter. Emission values ranged from about zero to 700 mg $C-CO_2$ m⁻² h⁻¹. Further, the effect of animal impact on CO_2 emissions was opposite to that on N₂O fluxes, as the highest CO₂ fluxes were mostly recorded at the least impacted location, where likely respiration of plants increased overall CO₂ production. The potential for N₂O reduction to N₂ was determined in severely and moderately impacted soil in early autumn using acetylene inhibition; N₂ was generally the main nitrogen gas emitted. To test the relationship between rainfall and N₂O emissions, experimental wetting of dry soil was performed which caused a sharp, but short-lived increase of N₂O emissions.

Paper VI contains results describing transect with different cattle impact at overwintering area. Fluxes of N_2O and CO_2 were measured and physical and

chemical parameters of pasture soil at the area were determined. Excretal returns and physical disturbance due to treading can greatly influence nitrogen flows in grazed pastures. Dung and urine depositions stimulate microbial transformations, while soil compaction and poaching change the physical environment in which these transformations take place. In this study, a cattle overwintering area in the Southwest Czech Republic was characterized with respect to bulk density, porosity, water-filled pore space (WFPS), organic C, total N, pH, microbial biomass C and denitrifying enzyme activity (DEA). Carbon dioxide and nitrous oxide (N_2O) emissions were measured on four different dates between October 2001 and May 2002. Sampling took place along a transect away from an open barn with access to feed. Soil chemical and biological properties showed that deposition of excreta declined with distance from the barn. In contrast, N₂O emissions were highest at intermediate positions along the transect. At the section with the greatest animal impact, the ratio of N2 versus N2O produced was fivefold higher, and the soil pH was 2 units higher, compared to the section with the least animal impact, which indicated that soil conditions favoured production of N₂ rather than N₂O in the area where excretal returns and treading was intense. A multiple linear regression was conducted using data from the last sampling. There were significant effects of WFPS and pH on log-transformed N2O emissions, while effects of NH_4^+ and NO_3^- , and interactions between NH_4^+ and, respectively, WFPS and pH were nearly significant. The observations indicate that, whereas pasture management to achieve a better distribution of animal impact may improve N retention in the soil, it is not clear whether this will reduce N_2O emissions.

General discussion and conclusions

The main regulating factor of N₂O emissions is the rate of nutrients input. It was confirmed during two years of regular measurement of emissions. Accumulation of carbon and nitrogen during winter creates favourable conditions for high production of N_2O and annual production of N_2O was higher in soil with higher annual input of N (Paper V). Moreover, emissions of N_2O in cattleimpacted soil may be further stimulated by addition of available C and nitrate N and soil at the cattle overwintering area is able to produce large quantities of N₂O during short-term bursts of activity following inputs of nutrients (Papers I, II, III and IV). Emissions of N₂O measured during these bursts are proportional to the amount of added mineral nitrogen. Increasing doses of nutrients increased cumulative values of emissions proportionally to the level of fertilization without any limit in a broad range of nitrate-nitrogen inputs $(0 - 1500 \text{ kg N ha}^{-1})$ (Paper II). The experimentally estimated losses of nitrogen in the form of N₂O were in the range of 0.2 - 5.6 % of applied nitrogen, which is in the range of previously reported values (Velthof et al. 1997; Fowler et al. 1997; Lampe et al. 2006; McTagart et al. 1997).

Long-term history of cattle impact increases not only actual rates of N_2O production, but also the potential production of N_2O from the pasture soil (Paper I). Denitrification potential, however, does not increase indefinitely with

increasing cattle impact despite higher nutrient inputs and accelerated microbial activities. Besides higher rate of denitrification, increasing cattle impact stimulates reduction of N₂O to N₂. It was recently confirmed in experiment by Chroňáková et al. (2009) who observed increased activity of denitrifying enzymes along the gradient of cattle impact with N2 as prevailing terminal product in soil with the highest effect of cattle. Similar results were also observed in field experiment with addition of ¹⁵NO₃ (Paper III). In contrast, different picture showed laboratory measurement of potential denitrification. The highest potential production of N₂O was determined in soil with moderate cattle impact. Reduction of N₂O to N₂ only partly explains why N₂O emissions were not greater in the severely than in the moderately impacted soil because total denitrification potential was lower in the severely impacted than in the moderately impacted soil. At the highest level of cattle impact, other N consuming processes (assimilatory or dissimilatory reduction of N rather than denitrification) or the accumulation of deleterious intermediate products after amendments probably reduced the potential production of N₂O.

The amount of N₂O released from the soil is also strongly affected by soil and environmental conditions, which are likely to include soil temperature and moisture and porosity (Papers IV, V and VI). In field measurements targeted on the short-term effects of temperature on emissions of N₂O and CO₂, CO₂ was produced continually in the soil and its emission was often correlated with temperature. On the other hand, the pattern of N₂O flux was much less predictable than that of CO_2 (Paper IV). It is contrary to laboratory measurements of potential denitrification where production of CO₂ and N₂O were correlated (Paper I). In addition, close correlation between CO2 and N2O emissions was found in field experiment with measurement of emissions from soil amended with high input of C and NO_3^{-} . This discrepancy suggests that in field conditions, N_2O is produced in limited space and time. At the overwintering area, inputs of nutrients take place during long period from November to May and each microsite producing N₂O receives input of nutrients in different time. Production of N2O is characterized by sharp, short-term peaks of fluxes at each microsite and in result, emissions are heterogeneous in space and time (Paper IV). Obviously, the estimates of gas production and cumulative fluxes in general and those of N₂O in particular must be based on very detailed knowledge of diurnal variations in fluxes in the given period. Our results also suggest detail investigation of emissions during period of increased fluxes as possible way of better estimation of annual fluxes of N₂O.

Estimation of relationships between physical soil parameters other than temperature and N_2O emissions do not enable clear conclusions (Papers V and VI). The effect of rainfall and soil moisture is very complex and difficult to assess. In our conditions, the highest flux of N_2O emissions was observed shortly after rainfall. However, high fluxes were also determined in periods of dry early spring (Paper V).

Results of simultaneous measurements of N_2O emissions with determination of porosity suggest effect of physical conditions regulating aeration status. However, a hypothesis that lower porosity of soil with higher cattle impact increases emissions of N_2O was not supported by experimental data (Paper VI). This is in agreement with controversial results reported in other studies. Decreased porosity or increased water-filled pore space not only stimulate denitrification, but they also accelerate reduction of N_2O to N_2 (Priemé, Christensen 1991). Results of diurnal measurements suggest that emissions may change rapidly and it may also rapidly change their relationship with other environmental factors. With available methods, these changes are hard to follow. In addition, effect of cattle on soil physical properties is not simple and it depends on interaction with other environmental factors. Cattle trampling not only leads to compaction, but it also creates patches of loosened soil. Soil surface is also very rough and heterogeneous that makes determination of physical parameters difficult. Despite that, the data presented in Papers I - VI improve the knowledge on N-transformations in pasture soils as well as on regulatory role of some soil and environmental factors on rates on N_2O formation in, and emission from, the soil.

References

Beck, H., Christensen, S., 1987. The effect of grass maturing and root decay on N_2O production in soil. Plant and Soil 103, 269 - 273.

Bremner, J. M., 1997. Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems 49, 7 - 16.

Christensen, S., 1983. Nitrous oxide emission from a soil under permanent grass: Seasonal and diurnal fluctuations as influenced by manuring and fertilization. Soil Biology and Biochemistry 15, 531 - 536.

Chroňáková, A., Radl, V., Čuhel J., Šimek, M., Elhottová, D., Schloter, M., 2009. Overwintering management on upland pasture causes shifts in the abundance of denitrifying microbial communities, their activity and N₂O-reducing ability. Soil Biology and Biochemistry 42, 1132-1138.

Coyne, M., 1999. Soil microbiology: an exploratory aproach. Delmar publishers, Albany, 462p.

Davidson, E. A., 1993. Processes regulating soil emissions of NO and N_2O in a seasonally dry tropical forest. Ecology 74, 130 - 139.

Davidson, E.A., Verchot, L.V., 2000. Testing the hole-in-the-pipe model of nitric and nitrous oxide emissions from soils using the TRAGNET database. Global Biogeochemical Cycles 4, 1035 - 1043.

Dendooven, L., Splatt, P., Pemberton, S., Ellis, S., Anderson, J. M., 1997. Controls over denitrification and its gaseous products in a permanent pasture soil. In: Jarvis, S. C., Pain, B. F. (Eds.). Gaseous nitrogen emissions from grasslands. CAB International, Wallingford, Oxon, UK, 452 p.

Fowler, D., Skiba, U., Hargreaves, K. J., 1997. Emissions of nitrous oxide from grasslands. In: Jarvis, S. C., Pain, B. F. (Eds.). Gaseous nitrogen emissions from grasslands. CAB International, Wallingford, Oxon, UK, 452 p.

Heincke, M., Kaupenjohann, M., 1999. Effects of soil solution on the dynamics of N_2O emissions: a review. Nutrient Cycling in Agroecosystems 55, 133 – 157.

Hillel, D., 1998. Environmental soil physics. 2nd edition . Academic Press, San Diego, 771 p.

Jarvis, S. C., Pain, B. F., (Eds.), 1997. Gaseous nitrogen emissions from grasslands. CAB International, Wallingford, Oxon, UK, 452 p.

Killham, K., 1994. Soil ecology. Cambridge University Press, Cambridge, 242 p.

Lampe, C., Dittert, K., Sattelmacher, B., Wachendorf, M., Loges, R., Taube, F., 2006. Sources and rates of nitrous oxide emissions from grazed grassland after application of ¹⁵N-labelled mineral fertilizer and slurry. Soil Biology and Biochemistry 38, 2602 – 2613.

McTaggart, I. P., Douglas, J. T., Clayton, H., Smith, K. A., 1997. Nitrous oxide emission from slurry and mineral nitrogen fertilizer applied to grassland. In: Jarvis, S. C., Pain, B. F., (Eds.), 1997. Gaseous nitrogen emissions from grasslands. CAB International, Wallingford, Oxon, UK, 452 p.

Mosier, A. S., Schimel, D., 1991. Influence of agricultural nitrogen on atmospheric methane and nitrous oxide. Chemistry and industry 23, 874 - 877.

Nielsen, T. H., Nielsen, L. P., Revsbach, N. P., 1996. Nitrification and coupled nitrification - denitrification associated with a soil manure interface. Soil Science Society of America Journal 60, 1829 - 1840.

Oenema, O., Velthof, G. L., Yamulki, S., Jarvis, S. C., 1997. Nitrous oxide emissions from grazed grassland. Soil Use and Management 13, 288 - 295.

Ottow, J. G. G., Burth-Gebauer, I. El Demerdash, M. E. Influence of pH and partial oxygen pressure on the $N_2O : N_2$ ratio of denitrification. In: Golterman, H. L., 1985. Denitrification in the nitrogen cycle. Plenum Publishing Corporation, 101 - 120.

Parkin, T. B., 1987. Soil microsites as a source of denitrification variability. Soil Science Society of America Journal 51, 1492 - 1501.

Paul, E. A., Clark, F. E., 1996. Soil Microbiology and Biochemistry. Academic Press, San Diego, 340 p.

Priemé, A., Christensen, S., 1991. Emission of nitrous oxide in Denmark. Sources related to agriculture and natural ecosystems. NERI technical report no.18, Roskild, Denmark, 45 p.

Rice, C. W., Rogers, K. L., 1993. Denitrification in subsurface environments: Potential source for atmospheric nitrous oxide. In: Agricultural ecosystem effects on trace gases and global climate change. ASA special publications, Madison, Wisconsin, no.55, 121 - 132.

Robertson, G. P., 1993. Fluxes of nitrous oxide and other nitrogen trace gases from intensively managed landscapes: A global perspective. In: Agricultural ecosystem effects on trace gases and global climate change. ASA special publications, Madison, Wisconsin, no.55, 95 - 108.

Simarmata, T., Benckiser, G., Ottow, J. C. G., 1993. Effect of an increasing carbon : nitrate ratio on the reliability of acetylene in blocking the N_2O - reductase activity of denitrifying bacteria in soil. Biology and Fertility of Soils 15, 107 - 112.

Skiba, U., Hargreaves, K. J., Fowler, D., Smith, K. A., 1992. Fluxes of nitric and nitrous oxides from agricultural soils in a cool temperate climate. Atmospheric Environment 26, 2477 - 2488.

Smith, K. A., 1997. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils. Global Change Biology 3, 327 - 338.

Teepe, R., Brumme, R., Beese, F., 2000. Nitrous oxide emissions from frozen soils under agricultural fallow and forest land. Soil Biology and Biochemistry 32, 1807 - 1810.

Velthof, G. L., Oenema, O., Postma, R., Van Beusichem, M. L., 1997. Effects of type and amount of applied nitrogen fertilizer on N_2O fluxes from intensively managed grassland. Nutrient Cycling in Agroecosystems 46, 257 - 267.

Webster, C. P., Goulding, K. W. T., 1989. Influence of soil carbon content on denitrification from fallow land during autumn. Journal of the Science of Food and Agriculture 49, 131 - 142.

Long-term animal impact modifies potential production of N₂O from pasture soil

Brůček, P., Šimek, M., Hynšt, J., 2009. Long-term animal impact modifies potential production of N₂O from pasture soil. Biology and Fertility of Soils 46, 27-36.

Podíl na publikaci 60%

Abstract

At cattle overwintering areas, inputs of nutrients in animal excrements create conditions favourable for intensive microbial activity in soil. During nitrogen transformations, significant amounts of N2O are released, which makes overwintering areas important sources of N₂O emission. In previous studies, however, increasing intensity of long-term cattle impact did not always increase emissions of N₂O from the soil: in some cases, N₂O emissions from the soil were lower at the most impacted area than at the moderately impacted one. Thus, the relationships between the level of long-term animal impact and potential production of N₂O from soil by denitrification were investigated in field and laboratory experiments. Field measurements indicated that the production of N₂O after glucose and nitrate amendments was greater in severely and moderately impacted locations than in an unimpacted location, while differences between the severely and moderately impacted locations were not significant. In laboratory experiments, the potential production of N₂O (measured as anaerobic production of N₂O after addition of glucose and nitrate) was highest in the moderately impacted soil. Surprisingly, potential N₂O production was lower in the most impacted than in the moderately impacted soil, and the net N₂O production in the highly impacted soil was further decreased by a significant reduction of N₂O to N₂. The expected stimulating effect of an increasing ratio of glucose C : nitrate N on the reduction of N₂O to N₂ during denitrification was not confirmed. The results show that cattle increase the denitrification potential of the soil but suggest that the denitrification potential does not increase indefinitely with increasing cattle impact.

Abstrakt

V půdě zimoviště skotu vytvářejí vysoké vstupy živin příznivé podmínky pro intenzivní mikrobní aktivitu. Během mikrobních transformací vzniká značné množství N₂O a proto je zimoviště významným zdrojem emisí N₂O. Nicméně v předchozích měřeních bylo zjištěno, že rostoucí vliv skotu nemusí být vždy spojen s nárůstem emisí N₂O a v několika případech byly emise z půdy nejvíce zatížené skotem nižší než emise z půdy se střední zátěží. Proto byla závislost mezi dlouhodobým vlivem skotu a potenciální produkcí N2O denitrifikací sledována v polních a laboratorních pokusech. Z polních měření vyplývá, že produkce N2O po přídavku glukózy a nitrátu byla větší v půdě středně a silně zatížené než v půdě neovlivněné, ale rozdíly mezi silně a středně zatíženou půdou byly neprůkazné. V laboratorních pokusech bylo zjištěno, že potenciální produkce N₂O (měřena jako anaerobní produkce N₂O po přídavku glukózy a nitrátu) byla nejvyšší v půdě středně zatížené. Potenciální produkce N2O byla překvapivě nižší v nejvíce zatížené půdě než ve středně zatížené a čistá produkce N₂O v nejvíce ovlivněné půdě byla dále snižována redukcí N₂O na N₂. Předpokládaný stimulační efekt rostoucího poměru C : NO_3^- na redukci N_2O na N_2 během denitrifikace nebyl potvrzen. Z výsledků vyplývá, že rostoucí vliv skotu zvyšuje potenciální denitrifikaci v půdě, ale potenciální denitrifikace neroste donekonečna s rostoucím vlivem zvířat.

Nitrous oxide emissions from cattle-impacted pasture soil amended with nitrate and glucose

Hynšt, J., Šimek, M., Brůček, P., 2007. Nitrous oxide emissions from cattle-impacted pasture soil amended with nitrate and glucose. Biology and Fertility of Soils 43, 853-859.

Podíl na publikaci 35%

Abstract

There is little information concerning N_2O fluxes in the pasture soil, which has received large amounts of nutrients as urine and dung for several years. The aims of this study were to: 1) experimentally quantify the relationship between mineral N input and N_2O emissions from denitrification; 2) describe the time course of N₂O fluxes resulting in N inputs; and 3) find whether there exists an upper limit of the amount of nitrogen escaping the soil in the form of N_2O . The study site was a grassland used as a cattle overwintering area. It was amended with KNO3 and glucose corresponding to 10 - 1 500 kg N and C ha⁻¹, covering the range of nutrient inputs occurring in real field conditions. Using manual permanent chambers, N₂O fluxes from the soil were monitored for several days after the amendments. Peak N₂O emissions were up to 94 mg N₂O-N m⁻² h⁻¹ 5-8 hours after amendment. No upper limit of N₂O emissions was detected as the emissions were directly related to the dose of nutrients in the whole range of amendments used, but the fluxes reflected the soil and environmental conditions, too. Thus, in 3 different experiments performed during the season, total cumulative losses of N₂O-N ranged from 0.2 to 5.6% of the applied 500 kg NO_3 -N ha⁻¹. Splitting of high nutrient doses lowered the rate of N₂O fluxes following the first amendment, but the effect of splitting on the total amount of N₂O-N released from the soil was insignificant, as the initial lower values of emissions in the split variants were compensated for by a longer duration of gas fluxes. The results suggest that the cattle impacted soil has the potential to metabolize large inputs of mineral nitrogen over short periods (\sim days). Also, the emission factors for NO₃⁻-N did not exceed values reported in literature.

Abstrakt

Existuje jenom málo poznatků o emisích N₂O z půd na pastvinách dlouhodobě ovlivněných velkými vstupy živin ve formě moči a exkrementů zvířat. Cílem

práce bylo (1) experimentálně zjistit závislost mezi vstupem dusíku a množstvím N_2O , které vzniká při denitrifikaci, (2) popsat časový vývoj emisí N_2O , které vznikají v důsledku vstupu živin a (3) najít, jestli existuje horní hranice emisí N_2O . Pokusy probíhaly na travním porostu využívaném jako zimoviště skotu. Do půdy byl přidán KNO₃ a glukóza v množství odpovídajícím 10 - 1500 kg N a C na hektar, což je možný rozsah vstupu živin v reálných podmínkách. Emise byly monitorovány s využitím přenosných komor v průběhu několika dní po přídavku. Nebyla zjištěna horní hranice emisí N_2O , emise byly úměrné množství aplikovaných živin v celém rozsahu dávek. Celkové ztráty N_2O -N byly v rozsahu 0,2 - 5,6% aplikované dávky dusíku. Dělení dávek živin snížilo emise N_2O po prvním přídavku, ale vliv dělení na celkové množství N_2O uvolněného z půdy bylo neprůkazné, protože nižší počáteční hodnoty byly kompenzovány delším trváním emisí. Z výsledků vyplývá, že půda ovlivněná působením zvířat má velkou schopnost transformovat velké množství minerálního dusíku v krátké době. Emisní faktory pro NO_3^- N nepřekročily hodnoty uváděné v literatuře.

Gaseous nitrogen losses from a grassland area used for overwintering cattle

Šimek, M., Stevens, R.J., Laughlin, R.J., Hynšt, J., Brůček, P., Čuhel, J., Pietola, L., 2006. Gaseous nitrogen losses from a grassland area used for overwintering cattle. In: Soliva, C. R., Takahashi, J., Kreuzer, M. (Eds.). Greenhouse gases and animal agriculture: an update. International Congress Series 1293, 343-346.

Podíl na publikaci 10%

Abstract

The rates of N₂O emission at overwintering area were mostly directly related to the intensity of animal impact. However, laboratory measurements had shown a much greater potential for N₂O production from soil in a severely impacted site than indicated by field measurements, possibly due to factors affecting the mole fraction of N₂O. The ¹⁵N gas-flux method was used to measure the emissions of N₂O and N₂ at three sites along a gradient of animal impact. Over the experimental period (72 h), the loss of NO₃⁻-N as N gases was 60, 12 and 3%, and the mole fraction of N₂O was 0.04, 0.15 and 0.75 for the severe, moderate and control treatments, respectively. We hypothesize that soil pH which is enhanced in impacted sites (from 5.7 up to 7.8) may control mole fraction of N₂O in such a way that under alkaline conditions most of the nitrogen escapes as N₂.

Abstrakt

Bylo zjištěno, že trvalé travní porosty využívané k přezimování skotu jsou významným bodovým zdrojem N_2O díky utužení půdy a akumulaci exkrementů. Hodnoty emisí byly úměrné vlivu zvířat, ale výsledky laboratorních měření naznačují mnohem vyšší potenciální produkci N_2O z půdy nejvíce zatížené zvířaty než bylo zjištěno v polních měřeních. Možným vysvětlením je působení faktorů, které ovlivňují molární poměr N_2O . Emise N_2O a N_2 byly měřeny s využitím ¹⁵N na třech stanovištích podél gradientu vlivu skotu. Během měření (72 hodin) dosahovaly ztráty NO_3^- -N ve formě plynů 60, 12 a 3% a molární poměr N_2O 0,04, 0,15 a 0,75 na silně zatížené, středně zatížené a kontrolní ploše. Tento rozdíl mohl být způsoben zvýšenou hodnotou pH na stanovištích ovlivněných zvířaty. Zvýšená hodnota pH působí na molární poměr N_2O tak, že větší podíl dusíku uniká ve formě N_2 .

Diurnal fluxes of CO₂ and N₂O from cattle-impacted soil and implications for greenhouse gases emission estimates over longer periods

Šimek, M., Brůček, P., Hynšt, J. Diurnal fluxes of CO₂ and N₂O from cattle-impacted soil and implications for greenhouse gases emission estimates over longer periods. Submitted.

Podíl na publikaci 35%

Abstract

Short-term diurnal changes of emissions of CO_2 and N_2O were determined in cattle overwintering area during several specific periods of the year. Production of both N_2O and CO_2 changed quickly over a relatively short time, but the general course of fluxes of the two gases was different. CO_2 emissions were basically controlled by temperature and most chambers showed the same trend of flux development. In contrast, emissions of N_2O were not only extremely variable, but each chamber had its own time course of emissions; therefore the relationship between N_2O fluxes and temperature was far more complicated. According to our results, we strongly recommend detailed investigations including frequent emission measurements in periods of high gas fluxes as the way of more precise estimations of gas emissions over longer periods.

Abstrakt

Krátkodobé diurnální změny v emisích CO₂ a N₂O byly zjištěny na zimní pastvině pro skot během několika charakteristických období roku. Produkce N₂O i CO₂ se mění velmi rychle i během relativně krátké doby, ale i základní průběh emisí těchto dvou plynů byl rozdílný. Emise CO₂ jsou určovány převážně teplotou a většina pokusných komor měla shodný trend průběhu emisí. Naproti tomu emise N₂O byly nejenom velmi variabilní, ale také každá komora měla svůj specifický průběh emisí, proto vztah mezi emisemi N₂O a teplotou byl komplikovanější. V souladu s výsledky důrazně doporučujeme detailní výzkum včetně častého vzorkování v době vysokých plynných emisí, jako způsob jak přesněji stanovit celkové plynné emise v delších časových úsecích.

High fluxes but different patterns of N₂O and CO₂ emissions from soil in a cattle overwintering area

Hynšt, J., Šimek, M., Brůček, P., Petersen, S. O., 2007. High fluxes but different patterns of nitrous oxide and carbon dioxide emissions from soil in a cattle overwintering area. Agriculture, Ecosystem and Environment 120, 269-279.

Podíl na publikaci 20%

Abstract

Emissions of N₂O and CO₂ from a cattle overwintering area were measured during two years. The measurements were performed at three sampling locations along a gradient of animal impact (severe, moderate, slight) to test the hypothesis that emissions of CO₂ and N₂O are positively related to the degree of impact. In addition to CO_2 and N_2O fluxes, soil mineral nitrogen (NH_4^+ and NO_3^-), pH and temperature were determined to assess possible regulations of gas fluxes. Deposition of animal excreta resulted in a significant accumulation of nitrogen in the soil during winter. Most of the N₂O was emitted during a few short periods in spring and/or in late autumn. Large N₂O fluxes were associated with recent rainfall on some sampling dates. During winter and spring, presumably in periods of increasing temperatures, intensive soil nitrogen transformations took place, followed by peaks of N₂O emissions. Maximum N₂O fluxes of up to 2.5 mg N- $N_2O m^{-2} h^{-1}$ were usually recorded at the most impacted location near the animal house, where also the highest concentrations of mineral nitrogen occurred. However, the effect of animal impact was not simple and on some occasions N_2O emissions were higher at the moderately impacted location. The emissions of CO₂ showed a completely different pattern than those of N₂O, being correlated with soil temperature; the highest emissions thus occurred in June-July, while very low fluxes were found in winter. Emission values ranged from about zero to 700 mg $C-CO_2 \text{ m}^{-2} \text{ h}^{-1}$. Further, the effect of animal impact on CO_2 emissions was opposite to that on N₂O fluxes, as the highest CO₂ fluxes were mostly recorded at the least impacted location, where likely respiration of plants increased overall CO₂ production. The potential for N₂O reduction to N₂ was determined in severely and moderately impacted soil in early autumn using acetylene inhibition; N₂ was generally the main nitrogen gas emitted. To test the relationship between rainfall and N₂O emissions, experimental wetting of dry soil was performed which caused a sharp, but short-lived increase of N₂O emissions.

Abstrakt

Zimoviště skotu mohou být významným zdrojem emisí významných skleníkových plynů, CO_2 a N_2O . Bylo provedeno dvouleté sledování emisí N_2O a CO_2 z půd zimoviště. Měření probíhalo na třech bodech podél gradientu vlivu zvířat s cílem ověřit hypotézu, že emise N_2O a CO_2 jsou úměrné vlivu zvířat. Byly také měřeny obsah minerálního dusíku, hodnota pH a teplota s cílem zjistit vliv regulačních faktorů na emise. Hromadění exkrementů zvířat na zimovišti silně zvýšilo obsah dusíku v půdě během zimních měsíců, ale většina N_2O vznikla během krátkých period na jaře a na podzim. Nejvyšší hodnoty emisí byly naměřeny na ploše nejvíce zatížené zvířaty poblíž kravína, kde byla také nejvyšší koncentrace dusíku v půdě. Emise CO_2 měly zcela odlišný vývoj než emise N_2O a byly přímo úměrné teplotě půdy s nejvyššími hodnotami v období červen – červenec. Z výsledků vyplývá, že zimoviště je významným zdrojem skleníkových plynů, včetně N_2O a CO_2 . Nicméně emise obou plynů mají odlišný průběh během roku a zřejmě jsou regulovány odlišnými faktory prostředí.

Effects of excretal returns and soil compaction on nitrous oxide emissions from a cattle overwintering area

Šimek, M., Brůček, P., Hynšt, J., Uhlířová, E., Petersen, S.O., 2006. Effects of excretal returns and soil compaction on nitrous oxide emissions from a cattle overwintering area. Agriculture, Ecosystem and Environment 112, 186-191.

Podíl na publikaci 40%

Abstract

Excretal returns and physical disturbance due to treading can greatly influence nitrogen flows in grazed pastures. Dung and urine depositions stimulate microbial transformations, while soil compaction and poaching change the physical environment in which these transformations take place. In this study, a cattle overwintering area in the Southwest Czech Republic was characterized with respect to bulk density, porosity, water-filled pore space (WFPS), organic C, total N, pH, microbial biomass C and denitrifying enzyme activity (DEA). Carbon dioxide and nitrous oxide (N₂O) emissions were measured on four different dates between October 2001 and May 2002. Sampling took place along a transect away from an open barn with access to feed. Soil chemical and biological properties showed that deposition of excreta declined with distance from the barn. In contrast, N₂O emissions were highest at intermediate positions along the transect. At the section with the greatest animal impact, the ratio of N2 versus N2O produced was five-fold higher, and the soil pH was 2 units higher, compared to the section with the least animal impact, which indicated that soil conditions favoured production of N_2 rather than N_2O in the area where excretal returns and treading was intense. A multiple linear regression was conducted using data from the last sampling. There were significant effects of WFPS and pH on logtransformed N₂O emissions, while effects of NH₄⁺ and NO₃⁻, and interactions between NH₄⁺ and, respectively, WFPS and pH were nearly significant. The observations indicate that, whereas pasture management to achieve a better distribution of animal impact may improve N retention in the soil, it is not clear whether this will reduce N₂O emissions.

Abstrakt

Exkrementy zvířat a narušení povrchu vlivem pohybu pri pastvě silně ovlivňují mikrobní transformace dusíku v půdách pastvin. Emise oxidu dusného a oxidu uhličitého byly měřeny ve čtyřech termínech od října 2001 do května 2002. V půdě byla stanovena objemová hmotnost, pórovitost, podíl pórů vyplněných vodou (WFPS), organický C, celkový N, pH, uhlík v mikrobní biomase a aktivita denitrifikačních enzymů (DEA). Vzorky byly odebírány na transektu s rostoucí vzdáleností od kravína. Chemické a biologické vlastnosti půd prokázaly, že přísun živin ve forme exkrementů klesal podél transektu směrem od kravína. Naopak, emise N₂O byly největší ve střední části transektu. V části zimovište nejvíce zatížené dobytkem bylo pH vyšší o 2 jednotky a poměr N₂/N₂O byl pětkrát vyšší než v části s nejmenší zátěží. Pomocí mnohonásobné lineární regrese byl zjišten průkazný vliv WFPS a pH na emise N₂O, zatímco vliv NH₄⁺ a NO₃⁻ byl neprůkazný. Z výsledku vyplývá, že změny obhospodařování zimovište, zaměrené na rovnoměrnejší zatížení zvířaty, nemusí být nutně spojeny s redukcí emisí N₂O.

List of publications - Petr Brůček

Šimek, M., Elhottová, D., Šantrůčková, H., Uhlířová, E., Hynšt, J., **Brůček, P.,** Kamír, V., 2004. Effects of cattle traffic and dung deposition on the microbial community in pasture soil. In: Greenhouse gas emissions from agriculture – Mitigation options and strategies (Weiske, A., ed.). Proceedings of the international conference, February 10-12, 2004, Leipzig, Germany, pp. 225-226.

Šimek, M., Hynšt, J., **Brůček, P.,** Čuhel, J., Kamír, V., 2004. Effects of cattle traffic and dung deposition on CO_2 and N_2O fluxes from soil in an overwintering plot. In: Greenhouse gas emissions from agriculture – Mitigation options and strategies (Weiske, A., ed.). Proceedings of the international conference, February 10-12, 2004, Leipzig, Germany, pp. 227-228.

Hynšt, J., **Brůček, P.,** Čuhel, J., Šimek, M., 2005. Dynamics of N_2O emissions after C and N amendments of soil at the cattle overwintering area. In: Life in soil VI. Proceedings from the international conference. Voříšek, K. (ed.). Czech Agricultural University, Prague 2005, 38-46. [in Czech]

Šimek, M., Hynšt, J., **Brůček, P.,** Čuhel, J., 2005. Emissions of so-called greenhouse gases (N_2O and CO_2) from pasture soil as a result of activity of soil microbial community – preliminary results. In: Life in soil VI. Proceedings from the international conference. Voříšek, K. (ed.). Czech Agricultural University, Prague 2005, 166-174. [in Czech]

Šimek, M., **Brůček, P.,** Hynšt, J., Uhlířová, E., Petersen, S.O., 2006. Effects of excretal returns and soil compaction on nitrous oxide emissions from a cattle overwintering area. Agriculture, Ecosystem and Environment 112, 186-191.

Šimek, M., Stevens, R.J., Laughlin, R.J., Hynšt, J., **Brůček, P.,** Čuhel, J., Pietola, L., 2006. Gaseous nitrogen losses from a grassland area used for overwintering cattle. In: Soliva, C. R., Takahashi, J., Kreuzer, M. (Eds.). Greenhouse gases and animal agriculture: an update. International Congress Series 1293, 2006, 343-346.

Hynšt, J., Šimek, M., **Brůček, P.,** Petersen, S. O., 2007. High fluxes but different patterns of nitrous oxide and carbon dioxide emissions from soil in a cattle overwintering area. Agriculture, Ecosystem and Environment 120, 269-279.

Hynšt, J., **Brůček, P**., Šimek, M., 2007. Nitrous oxide emissions from cattleimpacted pasture soil amended with nitrate and glucose. Biology and Fertility of Soils 43, 853-859.

Brůček, P., Šimek, M., Hynšt, J., 2009. Long-term animal impact modifies potential production of N_2O from pasture soil. Biology and Fertility of Soils 46, 27-36.

Šimek, M., **Brůček, P.,** Hynšt, J. Diurnal fluxes of CO_2 and N_2O from cattleimpacted soil and implications for greenhouse gases emission estimates over longer periods. Submitted.

Abstracts of conference papers

Šimek, M., Elhottová, D., Uhlířová, E., Šantrůčková, H., **Brůček, P.,** Hynšt, J., Kamír, V.: Soil microbial community in pasture soil: impact of cattle traffic and excretal returns. In: Structure and function of soil microbiota. International Symposium. Marburg, September 18-20, 2003, p. 167.

Hynšt, J., **Brůček, P.,** Čuhel, J., Šimek, M.: Nitrogen gaseous losses from pasture soil: N_2O emission from autumn to spring as influenced by cattle traffic and dung deposition. In: Practical solutions for managing optimum C and N content in agricultural soils II. International worshop. Prague, June 25 -27, 2003, p. 35.

Šimek, M., Elhottová, D., Uhlířová, E., Šantrůčková, H., **Brůček, P.,** Hynšt, J.: Microbial aspects of nitrous oxide and carbon dioxide emissions from pasture soil. In: 23. Congress of Czechoslovak Society for Microbiology, Brno 6.-9.9. 2004. Abstracts. Bulletin Československé společnosti mikrobiologické 45, Praha – Bratislava 2004, p. 109. [in Czech]

Šimek, M., Hynšt, J., **Brůček, P.**, Čuhel, J.: Emissions of so-called greenhouse gases (N_2O a CO_2) from pasture soil – result of activity of microbial community. In: Life in Soil VI, Šimon, T. (ed.). Výzkumný ústav rostlinné výroby, Praha 2005, p. 29. [in Czech]

Hynšt, J., **Brůček, P.,** Čuhel, J., Šimek, M.: Dynamics of N_2O emissions after C and N amendments of soil at the cattle overwintering area. In: Life in Soil VI. Šimon, T. (ed.). Výzkumný ústav rostlinné výroby, Praha 2005, p. 11. [in Czech]

Šimek, M., Hynšt, J., **Brůček, P.,** Čuhel, J., Elhottová, D., Šantrůčková, H., Kamír, V.: Cattle overwintering areas in middle-European conditions – important "point" sources of nitrous oxide emissions. In: XX International Grassland Congress: Offered papers. O'Mara, F.P., Wilkins, R.J., Mannetje, L. 't, Lovett, D.K., Rogers, P.A.M., Boland, T.M. (Eds.). Wageningen Academic Publishers, Wageningen 2005, p. 567.

Šimek, M., Stevens, R.J., Laughlin, R.J., Hynšt, J., **Brůček, P**., Čuhel, J., Pietola, L.: Gaseous nitrogen losses from a grassland area used for overwintering cattle. In: Soliva, C.R., Takahashi, J., Kreuzer, M. (eds.): Greenhouse Gases and Animal Agriculture, GGAA 2005. 20-24 September 2005, ETH Zurich, Switzerland - Working papers. Publication Series IAS ETH Zurich, Vol. 27, 2005. Supplement P-55.

Curriculum vitae

Petr Brůček

Date of birth: 17th February 1976

Education:

1990 – 1994 Secondary school, Příbram, Czech Republic 1995 – 2000 Mgr. (MSc.) teacher of biology and physical education, University of South Bohemia, Pedagogical Faculty, České Budějovice, Czech Republic. Thesis title: Botanical research of Kotelsky stream valley 2000 – 2001 Australian College of English (ACE), Sydney, Australia 2001 – 2009 Ph.D. studies – Ecology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic

Work experience:

2002 – 2006 Institute of Soil Biology, Biology Centre AS CR, České Budějovice, Czech Republic, research assistant 2006 – now s. p. Diamo, o. z. SUL, Příbram, Czech republic, technician

Research interests:

Nitrogen transformation in soil, mainly denitrification, and formation and emission of nitrous oxide. Physical characteristics of soil. Soil as the source of greenhouse gas emissions.