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     Insects belong to the most successful groups of organisms that have evolved 
numerous adaptations to seasonally oscillating environments. Decreasing temperatures 
in winter or dry seasons in tropics represent the most frequent conditions, which are 
incompatible with insect development and active life. 
     This chapter should introduce the reader to our current knowledge on the way how 
insects have adapted to seasonally recurring unfavourable conditions through the 
evolution of diapause and cold hardiness. A general perspective will be outlined and 
some well-documented examples will be presented. Physiological, biochemical and 
molecular mechanisms to cope with low temperatures are in the centre of my interest. 
In my Thesis, I focused on adjustments of the enzymatic complement, which is 
involved in the biosynthesis of cryoprotectants, and on heat shock proteins, which are 
expressed in response to temperature stress. The overwintering linden bug, 
Pyrrhocoris apterus (Heteroptera, Pyrrhocoridae), served as a model species for my 
studies. 
 
 
Diapause 
 
     In the temperate zone habitats, growth and reproduction of ectotherms are 
restricted  to a warm part of the year (summer), because low winter temperatures limit 
availability of food resources and directly decrease rates of biochemical reactions, 
metabolism, and life functions. In addition, winter season brings other environmental 
stresses such as risk of chilling and freezing injuries, risk of desiccation, attack by 
pathogens and predators. In response to seasonally predictable occurence of 
unfavourable conditions, a form of dormancy – diapause, which is analogous to 
hibernation in mammals, has evolved in many insect species (Andrewartha, 1952; 
Lees, 1955; Danilevski, 1961; Hodek, 1983; 1996; 2002; Tauber et al., 1986; Danks, 
1987).  
     Diapause represents an alternative developmental pathway characterized by a 
complete halt (or considerable slowing) of development, suppression of metabolism, 
and overall deep change of phenotype starting from unique gene expression and 
ending with altered physiology, morphology and behaviour (Denlinger, 1985; 2000; 
2002). Diapause is considered as a dynamic process consisting of several successive 
phases, rather than as a static developmental arrest (reviewed in Košťál, 2006). The 
terminological system suggested by Košťál (2006) will be used in this Thesis. Three 
main phases of ontogeny will be distinguished: pre-diapause development, diapause 
and post-diapause development; within the phase of diapause itself, the phases of 
initiation, maintenance and termination are clearly separable (at least in P. apterus) by 
using various physiological and molecular tools (Košťál et al., 2008).    
     Diapause occurs at a fixed, species-specific ontogenetic stage. For example, the 
silkmoth, Bombyx mori diapauses as early embryo (Yamashita, 1996), the European 
corn borer, Ostrinia nubialis enters diapause in its larval stage (Beck, 1989), the flesh 
fly, Sarcophaga crassipalpis in pupal stage (Denlinger, 1971), and the Colorado 



potato beetle, Leptinotarsa decemlineata in adult stage (Lefevere & DeKort, 1989). In 
some (relatively rare) cases, diapause is a fixed part of ontogenetic programme, which 
implies that the insect will always enter diapause regardless of the environmental 
conditions (obligatory diapause). In most cases, however, the induction of diapause is 
determined by specific environmental stimuli (facultative diapause). 
     The most common signal that regulates entry into diapause is short daylength 
during the late summer or early autumn. Photoperiodic signal (critical photoperiod) 
enters the brain either through the eyes or via extraretinal receptors (Numata et al., 
1997), it is then processed by unknown pathways in central nervous system (Stehlík et 
al., 2008), and transduced into a deep change of hormonal milieu, which causes the 
characteristic changes in physiology, morphology and behaviour of the insect 
(Denlinger, 1985; 2000; 2002). Although the daylength is a dominant environmental 
cue, other factors such as temperature, food quality and quantity, population density, 
and ecological interactions with other species may contribute to the incidence of 
diapause (Košťál, 2006).   
     Many studies have been conducted over the past years on hormonal regulation of 
diapause (for reviews, see: Denlinger, 1985; 2000; 2002). Precise functioning of 
hormonal systems is dependent on the species and developmental stage in which 
diapause occurs. Considering that insect hormones affect enormously wide spectrum 
of physiological processes, while literature usually mentions very specific roles in 
specific species, it is not simple to create a complex generalization on endocrine 
regulation of diapause. Two major families of hormones are involved in the regulation 
of diapause: juvenile hormones (produced in neurohemal organ corpora allata) and 
ecdysteroids (secreted by prothoracic gland). Their synthesis and secretion are 
regulated by direct nervous connections from the central brain and by neuropeptides, 
also secreted by specialized neurons of the central brain (Hodková, 1976; 1999; 
Hodková et al., 2001). Specific neuropeptide regulator of embryonic diapause, 
diapause hormone, was revealed and characterized in B. mori (Yamashita, 1996; 
Zhang et al., 2004). Diapause hormone, which is derived from pheromone biosythesis 
activating neuropeptide (PBAN), recently appeared to be an important regulator of 
development and reproduction in other moth species, e.g. Manduca sexta (Xu & 
Denlinger, 2004), Heliothis virescens (Xu & Denlinger, 2003) or Helicoverpa 
armigera (Wei et al., 2005).  
     Prior to entering diapause, the insects accumulate nutrient reserves during 
preparation or initiation phases (Košťál, 2006; Hahn & Denlinger, 2007). The fat body 
is a primary site of glycogen and triacylglycerol reserves synthesis, storage and 
catabolism (Hahn & Denlinger, 2007). Free amino acids and hexameric proteins are 
stored in haemolymph (Šula et al., 1995). In general, the energy reserves are 
continuously depleted during diapause progression, especially in the non-feeding 
diapause stages (embryo, immobile prepupa, pupa). The patterns of reserve utilisation, 
however, differ in individual species (Chippendale, 1973; Adedokun & Denlinger, 
1985; Lefevere & DeKort, 1989). 
     The rate of metabolic supression depends on insect species and its stage of 
diapause, but in general, it is important to shut off or downregulate the rates of 



energetically expensive and temperature sensitive physiological systems such as: cell 
proliferation, differentiation and morphogenesis; intense locomotion or flight; feeding, 
digestion and metabolism; maturation of gonads, mating and reproduction (Denlinger, 
2002; Storey & Storey, 2004). The pathways of basic intermediary metabolism and 
those ensuring cellular homeostasis are maintained. Specific metabolic processes may 
be even up-regulated during diapause (for instance those leading to cryoprotectant 
accumulation – will be discussed later). As a rule of thumb, the overall ATP-
producing and ATP-consuming processes remain balanced (Storey & Storey, 2004). 
Metabolism can also exhibit regular cycles of activity during diapause (Denlinger et 
al., 1972). 
     Techniques of molecular genetics represent the most progressive tool added to the 
insect physiologist´s armoury in last few years. We are now in a position to start 
connecting the emerging knowledge on molecular mechanisms with the well-
characterised physiological responses and thus contribute to the opening of „the 
regulatory Black Box“ between the perception of environmental signals and the 
expression of diapause phenotype. Molecular information on diapause, however, is 
currently limited to a few insect species. Even though diapause and overwintering 
expectedly result in silencing or down-regulation of many genes, a small subset of 
genes is upregulated or uniquely expressed during diapause (Denlinger et al., 1995; 
Flannagan et al., 1998). The differentialy regulated genes were divided into several 
categories: cell cycle regulators, signal transduction systems, molecular transporters, 
transcription factors, stress response, food utilization, metabolic function. Expression 
of some upregulated genes persists throughout the whole unfavourable period; others 
are upregulated only in early or late stages (Rinehart et al., 2000; Denlinger, 2002; 
Robich et al., 2007).   
     One characteristic feature of developmental arrest is a cell cycle arrest. Cell 
division cycle is halted in G0/G1 phase in diapausing pupae of S. crassipalpis 
(Tammariello & Denlinger, 1998) or in G2 phase in diapausing embryo of B. mori 
(Nakagaki et al., 1991). Expression of one of the important cell-cycle regulators, 
Proliferating Cell Nuclear Antigen (PCNA), is strongly suppressed in diapausing S. 
crassipalpis (Tammariello & Denlinger, 1998; Hayward et al., 2005). Recently, the 
genes of MAP kinase family, important components of signal transduction cascades, 
have been cloned and studied during embryonal diapause in B. mori (Fujiwara et al., 
2006). Study of insulin signaling pathways and FOXO gene (forkhead transcription 
factor) expression during overwintering diapause of a mosquito, Culex pipiens  
represents another step forward in understanding of molecular mechanisms mediating 
diapause response (Sim & Denlinger, 2008).  
     Many other studies have been done on gene products expressed exclusively either 
in diapause or during active development. For example, the expression of actin gene in 
various tissues were studied in Lymantria dispar (Lee et al., 1998) or C. pipiens (Kim 
et al., 2006). So called short neuropeptides (sNPF), characterized in L. decemlineata, 
are present only in non-diapause stages (Huybrechts et al., 2004). In contrast, 
diapausing pupae of this species specifically express the diapause protein 1 (de Kort & 
Koopmanschap, 1994), juvenile hormone estherases (Vermunt et al., 1999) and some 



other diapause associated transcripts (Ld DAT 1, 2, 3) (Yocum, 2003). Increased 
abundance of haemolymph proteins, generally referred to as hexameric storage 
proteins, are characteristic in diapause. Such proteins have been well documented in 
D. grandiosella (Brown & Chippendale, 1978), Cydia pomonela (Brown, 1980), 
Pectinophora gossypiella (Salama & Miller, 1992), P. apterus (Šula et al., 1995), L. 
decemlineata (Koopmanschap et al., 1995), Choristoneura fumiferana (Palli et al., 
1998). These proteins do not appear to be markers of diapause or overwintering 
programme; they serve as an important amino acid source for metabolism and tissue 
development that occurs immediately after the termination of developmental arrest. 
     Up- or down-regulation of genes coding for various metabolic enzymes have been 
studied rather randomly; first molecular studies have appeared in last few years. For 
instance, Robich and Denlinger (2005) observed changes in the expression of genes 
coding for trypsin, chymotrypsin-like serin protease (enzymes needed to digest a 
blood meal) and fatty acid synthase (key enzyme associated with the accumulation of 
lipid reserves) in overwintering females of the mosquito C. pipiens. Genes encoding 
two blood-digestive enzymes are down-regulated in early diapause, and a gene 
encoding an enzyme involved in lipid sequestration is concurrently highly up-
regulated in diapause-destined females. This molecular evidence demonstrates a 
metabolic switch from non-diapause blood feeding to sugar feeding and lipid 
sequestration in diapause.  
 
 
Diapause in P. apterus 
 
     The red firebug, Pyrrhocoris apterus, is a model species used for studies presented 
in this Thesis. In natural conditions of South Bohemia, the adults of brachypterous 
wing-morph enter facultative reproductive diapause in response to the short days of 
July and August, and maintain diapause during the warm end of summer and the 
beginning of autumn. During decreasing temperatures in late autumn, they find 
shelters in the upper litter layer and the diapause is gradually terminated. During cold 
winter months adults persist in a state of low temperature quiescence until the vernal 
rise of temperatures resume their locomotion, feeding and reproduction activities 
(Sláma, 1964; Hodek, 1968, 1983; Hodková, 1999; Košťál & Šimek, 2000; Košťál et 
al., 2004a,b). 
     The critical day-length of ca. 16 h 30 min serves as a pivotal signal inducing entry 
into diapause in the Czech populations of P. apterus is (Hodek, 1968). The question 
whether the products of various clock genes are or are not involved in photoperiodic 
regulation of diapause is currently subjected to detailed investigation (Hodková et al., 
2003; Syrová et al., 2003; Doležel et al., 2007). Principles of the transduction of 
photoperiodic signal to neuroendocrinne level were described by Hodková et al. 
(1999, 2001). By using surgical interventions to the neuroendocrine complex, they 
identified neuronal and humoral regulatory pathways leading to onset of diapause 
development. Alteration in hormonal signalling pathways in turn influence numerous 



physiological targets including reproduction activity. Diapausing females do not mate 
and do not develop and lay eggs. The duration of pre-ovipostion period (POP) after 
the transfer of diapausing females to permissive conditions (high temperature of 25°C 
and long day of 18 h L : 6 h D) may serve as a good descriptor of the gradual changes 
in the intensity of diapause (i.e. the progression of diapause development). It has been 
shown in both field-collected and laboratory-reared bugs that the POP gradually 
shortens with the progression of diapause development (Hodek, 1971; Socha & Šula, 
1992; Košťál et al., 2008). Other physiological changes that are linked to initiation 
phase were observed. For instance: the respiration rate (Sláma, 1964), the feeding and 
drinking rates (Socha et al., 1997), and locomotor activity (Hodková, 2003), all 
decreased significantly; transient changes in the activities of several digestive enzymes 
were detected (Socha et al., 1997); nutrient reserves rapidly accumulated in the fat 
body and muscles (Šula et al, 1997; Košťál et al., 2004a); and the concentrations of 
storage hexamer proteins increased in the haemolymph (Šula et al., 1998). In this 
Thesis, we add detailed observations of the diapause-related changes in relative 
abundance of mRNA transcripts of eight different genes coding for proteins 
implemented in energy metabolism, cryoprotectant biosynthesis, biological clocks, 
and hormonal receptors (Košťál et al., 2008). 
 
 
Cold acclimation and cold hardiness 
 
     Temperature affects every aspect of an ectotherm´s biological function. Rates of 
biochemical reactions and metabolism generally increase with increasing body 
temperature (of course, only up to some point of temperature optimum, where they 
turn to decrease). Development and other complex life processes are also temperature 
dependent. Insects' ability to regulate body temperature is only limited. Mostly, 
thermoregulation is achieved by using behavioral strategies such as basking/sheltering 
or muscle vibrations. There are insect species which can survive either extreme 
subzero temperatures of -50°C while some other species are adapted to survive at very 
high temperatures over 50°C. Adaptations and acclimatory changes in response to low 
temperature are in focus of this Thesis. 
     Any temperature below the thresholds for activity, growth and development may 
be considered as low. In a more strict sense, however, only the temperatures which 
negatively influence the insect physiology and cause injury are considered as low 
temperatures (Lee & Denlinger, 1991; Nedvěd, 1998). The exact range of low 
temperatures is species-specific and depends on the insects' eco-physiological state. 
Therefore many tropical and warm-acclimated temperate insect species may die at 
temperatures highly above 0°C, for example at 15-20°C. But most of the studies were 
focused on the effects of subzero temperatures (< 0°C). 
     Ectotherms (including insects) have evolved a diversity of behavioural, 
morphological and physiological adaptations for survival in cold during their 
evolution. The sum of such adaptations is collectively understood as cold hardiness. 



Cold hardiness can be simply defined as the ability of an organism to survive at low 
temperatures (Salt, 1961; Danks, 1978; Zachariassen, 1985; Bale, 1989; Michaud & 
Denlinger, 2004). The fundamental evolutionary adaptation of cold hardy organisms 
is their capability of acclimatization and, especially, cold acclimation. Cold 
acclimation, which represents typical part of complex seasonal acclimatization 
process, is characterized as a transient phenotypic change (plasticity) that occurs in 
response to declining ambient temperatures. Cold acclimation is often an integral 
component of diapause (Lee & Denlinger, 1991; Šlachta et al., 2002). In some species, 
however, diapause and cold hardiness may occur independently (Lee & Denlinger, 
1991). 
     Two broad categories of insect overwintering strategies are recognized: „freeze-
avoidance“ and „freeze-tolerance“ (Lee & Denlinger, 1991; Sinclair et al., 2003). 
Freeze-avoiding insects cannot survive ice formation in their body fluids and often die 
well above the temperature of crystallization of their body fluids, also known as a 
supercooling point (Bale, 1993; Renault et al., 2002). Freeze-tolerant species survive 
partial freezing of their body fluids, provided this is restricted to extracellular 
compartments (see below for exceptions). Although the two strategies are 
fundamentally different, they share several similarities, and certain species may even 
switch from one strategy to the other from one year to the next (Horwath & Duman 
1984).   
     Precise physiological principles of cold injury are still poorly understood. The main 
reason for such uncertainty is that the changes in body temperature target all levels of 
biological organization. Enormous number of processes and structures change with 
increasing/decreasing body temperature. Hence, it is not easy to decide on importance 
and causality of individual changes. Cold injury can be divided into two main 
categories: freeze-injury and chill-injury (Storey & Storey, 1988). In the first case, 
damage occurs as a result of ice crystal formation.  In the second case, damage is 
caused by temperatures that are below the threshold for activity but above the 
temperature of crystallization of body water (i.e. real freezing point or supercooling 
point, SCP). 
    Intracellular freezing is generally considered to be lethal (Asahina, 1969; 
Zachariassen, 1985). However, at least one nematode, Panagrolaimus davidi breaks 
the rule and shows what was long thought as impossible - it survives extensive 
intracellular freezing (Wharton & Ferns, 1995). In addition, Salt (1962) and Davis & 
Lee (2001) reported that the isolated fat body cells of dipausing larvae of Eurosta 
solidaginis also can survive intracellular freezing. In the great majority of freeze-
tolerant insects studied so far, freezing temperatures lead to ice crystal formation 
outside the cells. It results in an osmotic gradient between the unfrozen extracellular 
fraction and the interior of the cell. The osmotic disbalance across the membrane 
forces the water to leave the cell, dehydrating it and increasing the concentration of 
cytoplasmic solutes. High concentrations of intracellular solutes cause dramatic 
changes in pH, fluid viscosity, protein structure and enzyme functioning,  which can 
be highly damaging to cells and tissues of unadapted/unacclimated insect. 



Furthermore, direct mechanical action of ice crystals on cytoskeleton and cellular 
membranes is another important source of freeze-injury. 
 The physiological nature of chill-injury is much less understood. At a cellular 
level, it may be caused by: (i) loss of membrane barrier function and leakage of 
solutes, (ii) changes in protein conformation, protein instability, depolymerization 
and/or denaturation;  and (iii) overall metabolic disorder.  
 Ad (i): The physical properties of lipidic bilayers, i.e. the phase state and the 
fluidity, are acutely sensitive to temperature. Three basic phase states exist: highly 
ordered bilayer formed by lipids in a lamellar gel phase (Lß); fluid bilayer, liquid 
crystalline phase (Lα) and; nonbilayer, reversed hexagonal phase (HII) (Chapman, 
1975). Membrane fluidity is affected by various factors such as chemical composition, 
degree of hydration, pressure and temperature. Generally, at low temperatures, the 
membrane lipids become organized more rigidly in a gel phase. They are locked in 
place and exhibit neither flip-flop nor lateral mobility. As the temperature increases, it 
reaches a specific phase transition temperature (Tm), a certain melting temperature at 
which the membrane changes from solid phase to liquid phase, where the bilayer 
thickness is reduced, its volume increases and rapid translational movements of 
individual lipid molecules are allowed. Further increases of temperature may cause the 
transition into a nonbilayer, hexagonal phase at a specific temperature (Th), where the 
bilayer loses its integrity. Transition to the HII phase is favored by low hydration rates 
(Kirk et al., 1984). Those insects which overwinter in a frozen or dehydrated state may 
need specific adaptations to avoid transition of their membranes into the hexagonal 
phase (Pruitt & Lu, 2008). Permeability and activities of membrane bound enzymes, 
are also directly dependent on membrane state of fluidity. These functions tend to 
decrease gradually with decreasing temperature even when the "functional" fluid 
phase is maintained (Cossins & Macdonald, 1989; Hazel, 1989). After the transition 
from fluid to gel phase the activities of membrane bound enzyme and transport 
systems are drastically reduced (Hazel, 1989). Moreover, as the membranes are 
composed of many diverse lipid species (Dowhan, 1997), the phase transitions may 
span relatively broad temperature ranges. Thus, the gel and fluid membrane areas may 
coexist at certain temperatures. It can result in rapid loss of barrier function. 
Formation of a gel phase is thus believed to impend the cell functionality and survival. 
Similarly, unregulated transitions in the HII phase are considered incompatible with 
life processes. 
     Ad (ii): Protein depolymeration usually occurs at temperatures as high as 0°C and 
lower temperatures may result in irreversible protein denaturation (Privalov, 1990). At 
quarternary structure level, protein subunits are dissociated with decreasing 
temperature. Hereafter, all proteins lose their optimal noncovalent interactions with 
surrounding water and ion molecules and with the other proteins and their proper 
functioning is limited. For example, enzymes or protein transporters lose their activity, 
because substrates or transported molecules, respectively, can no longer bind to the 
active sites, which are not correctly positioned. 
     Ad (iii): Metabolism critically depends on concerted and highly regulated activities 
of many enzymes. With decreasing temperature, the enzymatic activities of proteins 



generally decrease. The problems may arise when different enzymes have different 
temperature requirements and different responses to temperature change. Energetic 
resources may become depleted as the ATP production is disrupted. Thus, key ATP-
dependent processes, such as ion pumping, may collapse. In addition, metabolic 
intermediates may be accumulated and reach toxic concentrations. In brief, metabolic 
pathways are in disbalance at sub-optimal temperatures.  
        Most of the overwintering insects must face a problem with their water balance. 
Many supercooled insects hibernate surrounded by ice crystals and water molecules 
tend to evaporate from their body and join the surrounding ice. In order to avoid or 
minimize such loss of water (or, vice versa, to prevent the penetration of ice crystals 
into the body), cuticular lipid layers become thicker and the composition of cuticular 
lipids may change with preparation for overwintering (Kaneko & Katagiri, 2004). In 
frozen insects, the vapour pressure of the unfrozen fraction of the body fluids is in 
equilibrium with ice, hence, freeze-tolerant insects should not lose water to 
surrounding ice. So called "bound water" is associated with hydration spheres of 
proteins, glycogen, aminoacids, polyols and ions. Because the concentrations of these 
compounds typically increase during diapause and overwintering, the pool of bound 
water will increase while the the pool of free, osmotically active water (bulk water) 
will decrease. Increasing osmolality of body solutions will limit the avalibility of 
water molecules for evaporation and ice crystal formation (Block, 2002). 
     The regulation of ion concentrations across the cell membranes requires 
maintenance of the membrane integrity and active (ATP-dependent) pumping of ions. 
Failure to maintain specific ion concentrations inside and outside the cell may lead to 
severe metabolic perturbations (loss of excitability in nerves, inability to keep cell 
volume, failure of secondary transports, opening of voltage-dependent Ca2+ channels, 
leakage of Ca2+ from endoplasmic reticulum), cell disintegration and death 
(Hochachka, 1986). To avoid dissipation of membrane potentials and stabilize 
membrane function, cold hardy insects have evolved "channel arrest” adaptation, 
which prevents the ion leakage through the channels. The decreased ion flux then 
allows the conservation of energy by reducing the need for ATP-demanding ion 
pumping (Košťál et al., 2004c; Zachariassen et al., 2004).   
     Adjustments of cell membrane composition represent an important part of cold 
acclimation process. Our knowledge of compositional alteration of membrane lipids 
due to temperature changes has been emerging gradually, originating from early 
observations a century ago (Henriques & Hansen, 1901) and culminating in 1974 
when the theory of homeoviscous adaptation (HVA) was formulated by Sinensky 
(1974). According to this theory, the general trend is an increase in unsaturated fatty 
acids at lower temperatures and an increase in saturated fatty acids at higher 
temperatures. HVA serves to maintain the correct membrane fluidity and its optimal 
functioning at the new conditions. This theory has been studied in a variety of 
organisms from bacteria to vertebrates, and its validity has been tested at both 
organismal (acclimatory) and evolutionary (adaptational) levels (Cossins & Prosser, 
1978; Behan-Martin et al., 1993). Although HVA is the most often used paradigm to 
interpret the temperature-induced restructuring of membranes, some observations are 



difficult to explain solely in terms of HVA. Thus, McElhaney (1984) introduced the 
term homeophasic adaptation (HPA) to stress the preservation of appropriate (liquid 
crystalline) phase for membrane functionality and later, Hazel (1995) developed and 
broadened the concept to dynamic phase behavior (DPB), to emphasize the dynamism 
of phase changes. In his model of DPB, the relationship between body temperature 
and transition temperatures of the lipid phases are conserved by acclimatory and 
adaptational adjustments of membrane composition. The adaptive meaning of DPB is 
to keep the physiologically required hexagonal II phases areas (for vesicular 
transports, regulation of activities of certain membrane enzymes), to prevent 
unregulated formation of disruptive hexagonal structures and to hold membrane lipids 
sufficiently "far" from the deleterious transition to gel phase. Acclimatory responses to 
cold causing restructuring of phospholipids in biological membranes have been shown 
in a few insect species, e.g. Cymbalophora pudica (Košťál & Šimek, 1998), 
Drosophila melanogaster (Overgaard et al., 2005), Chymomyza costata (Košťál et al., 
2003), P. apterus (Hodková et al., 1999, 2002; Šlachta et al., 2002; Tomčala et al., 
2006).  
     There are other known physiological mechanisms for insect cold hardiness. 
Antifreeze proteins (AFPs), ice-nucleating agents (INAs) or late embryogenesis 
abundant (LEA) proteins possess cryoprotective functions and are used by various 
insects to prevent cold injury (mainly ice crystal formation) (Ramsay, 1964; Patterson 
et al., 1981; Hew et al., 1983; Zachariassen & Hammel, 1976; Zachariassen, 1985; 
Goyal et al., 2005), but these were not the highlights of my studies, therefore they are 
not described more thoroughly. 
 
 
Low molecular mass cryoprotectants 
 
     The importance of low molecular mass cryoprotectants for overwintering survival 
of insects was recognized many years ago (Chino, 1957; Salt, 1957; Wyatt, 1963). 
Cryoprotectants known in insects include polyols (glycerol, sorbitol, ribitol, mannitol 
etc.), sugars (trehalose, fructose etc.), and also amino acids such as proline (Miller & 
Smith, 1975; Sømme, 1982; Lee & Denlinger, 1991). Their cryoprotective role is 
based on either colligative or non-colligative action. High concentrations of 
cryoprotectants (> 1 mol.kg-1) will cause considerable colligative depression of 
melting and supercooling points in the freeze-avoiding insects. In the freeze-tolerant 
species, they will regulate the extent of cell dehydration caused by extracellular ice 
formation (Zachariassen, 1985; Lee & Denlinger, 1991). Non-colligative effects of 
polyols accumulated in low concentrations (typically tens to hundreds mmol.kg-1) are 
probably based on stabilization and protection of functional structures of biological 
membranes and proteins (Crowe et al., 1987; Carpenter & Crowe, 1988; Storey & 
Storey, 1988, 1991; Sussich et al., 2001). It has been shown that low temperature (< 
5°C) serves as a main factor triggering polyol biosynthesis and accumulation (Storey 
& Storey, 1991). In some insects, the ability to accumulate cryoprotectants is 



restricted only to the individuals that have previously entered diapause (Šlachta et al., 
2002), in other species, anaerobiosis or various environmental cues, such as 
photoperiod, food and water availability, can potently stimulate their formation 
(Meyer, 1978; Storey & Storey, 1988).  
    Cryoprotectant biosynthesis takes place in fat body tissue (except eggs) (Hayakawa 
& Chino, 1981) and glycogen reserves serve as the main source. Enzymatic 
complement involved in cryoprotectant biosynthesis is in the focus of my Thesis. In 
the following text, I have summarized the information available on structural and 
functional characterization of important enzymes and also gene expression of their 
coding genes. 
     Glycogen phosphorylase (GPase) catalyzes glycogenolysis which may increase the 
flow of carbon to the hexose monophosphate shunt (pentose cycle) and to metabolic 
pathways where sugars and polyols are synthetized (Storey & Storey, 1981). GPase is 
functionally active in a form of homodimer. In insect species, amino acid sequence 
has been described in e.g. D. melanogaster (Tick et al., 1999). In insect fat body, this 
enzyme exists in two forms, an inactive b form and an active a form and it is regulated 
both allosterically and hormonally. Active cAMP dependent phosphorylase kinase 
phosphorylates GPase b, converting into active GPase a, which then begins glycogen 
breakdown. GPase a is reconverted to GPase b by the hydrolysis of its phosphate by 
protein phosphatase-1. The stimulating role of low temperature (in the range of 0-5ºC) 
leading to GPase activation has been well documented in many insects (Ziegler et al., 
1979; Hayakawa, 1985). Diverse regulation of phosphorylase kinase and phosphatase 
are involved in the activation of GPase by cold. Similar cold GPase activation has also 
been noticed in non-cold-hardy insect species (Ziegler et al., 1979). The percentage of 
GPase a form returns to a lower level when cryoprotectant content reaches its 
maximum (Churchill & Storey, 1989). 
    Glucose-6-phosphate dehydrogenase (G6PDH) is the first and key enzyme in 
pentose cycle, a metabolic pathway that supplies reducing energy to cells by 
maintaining the level of the co-enzyme nicotinamide adenine dinucleotide phosphate 
(NADPH). It catalyzes conversion of glucose-6-phosphate into 6-
phosphogluconolacton. G6PDH functions as monomer in all cells. Fouts et al. (1988) 
characterized its nucleotide sequence in D. melanogaster and assessed 65% homology 
to human gene. They found out two isoforms of G6PDH that differ in a number of 
introns. Fractional sequences are known in other insect species: Adalia decempunctata 
or A. bipunctata (Jiggins, 2005), Ceratitis capitata (Scott et al., 1993) and P. apterus 
(Košťál & Tollarová-Borovanská, unpublished data). Increasing activity of G6PDH 
with decreasing temperature observed in acclimated P. apterus suggests that the 
activity of pentose cycle is relatively elevated at low temperatures in diapausing 
insects and thus associated production of reducing power in the form of NADPH is 
critically needed for polyol synthesis (Košťál, et al., 2004b). 
     Phosphofructokinase-1 (PFK-1) is the most important regulatory enzyme of 
glycolysis. It is allosterically controlled by several activators and inhibitors. PFK-1 
catalyzes one of the important steps of glycolysis, the conversion of fructose-6-
phosphate and ATP to fructose-1,6-bisphosphate and ADP. Valaitis et al. (1992) have 



purified tetramer 330kDa PFK-1 in L. dispar, significantly similar to the mammalian 
enzyme. A single study of Currie and Sullivan (1994) has resulted in 155kDa protein 
in D. melanogaster, which is approximately half the size of the mammalian and silk 
moth enzyme. In some insect species (e.g. E. solidaginis), producing both glycerol and 
sorbitol as cryoprotectants, PFK-1 regulation is pivotal. The enzyme must be active 
during glycerol synthesis at warm temperatures and inactive to elevate carbon flow to 
pentose cycle, where sorbitol synthesis occurs at low temperature (Storey & Storey, 
1983). PFK-1 activity is manyfold higher in glycerol producing species than in species 
that form e.g. trehalose as a cryoprotectant (Hayakawa & Chino, 1982). 
     Next important regulatory enzyme of glycolysis might be pyruvate kinase (PK), 
which catalyzes the transfer of a phosphate group from phosphoenolpyruvate to ADP, 
yielding one molecule of pyruvate and one molecule of ATP. This enzyme is 
allosterically regulated by products originated in glycolysis. In insects, PK has been 
sequenced in e.g. D. melanogaster (Hsiao et al., 2002), B. mori (Sakano, unpublished 
data) or P. apterus (Košťál & Tollarová-Borovanská, unpublished data). In 
overwintering E. solidaginis low temperature acclimation resulted in unaffected 
activities of PK, that remained constant (Storey & Storey, 1981). Similar results in PK 
activity were observed  in diapausing cold-acclimated adults of P. apterus (Košťál & 
Tollarová-Borovanská, unpublished data). Different situation has been found in Chilo 
suppressalis, where glycerol synthesis resulted from the inhibition of PK (Li et al., 
2002).   
     Another enzymes of the Krebs cycle (e.g. citrate synthese, CS) or respiratory chain 
complex (e.g. cytochrome c oxidase, COX) might be subjects of studies in context to 
diapause and overwintering. Some partial sequences of CS have been identified in D. 
melanogaster and Anopheles gambiae (unpublished data). COX consists of 3 subunits 
(catalytic region) encoded by mitochondrial DNA and 7-10 subunits (modulating 
overall activity of the complex) encoded by nuclear DNA. Nucleotide sequence has 
been characterized in subunits I, II, III (de Bruijn, 1983) and Va (Caggese et al., 1999) 
in e.g. D. melanogaster. COX genes serve as a useful markers in phylogenetic studies 
separating species which morphological differences are subtle (Monti et al., 2005).   
     Less is known about the mitochondrial enzymes in terms of their activities or gene 
expression in context to overwintering. Decreased oxygen uptake could correlate with 
reduced oxidative metabolism in the arrested state. Work with E. solidaginis and 
Epiblema scudderiana indicated reduced mitochondrial function over the winter 
months, both species showing a significant reduction in the activities of following 
mitochondrial enzymes: CS, glutamate dehydrogenase, NAD-isocitrate dehydrogenase 
and COX (Joanisse & Storey, 1994). Such suppression of mitochondrial metabolism 
during winter could come from reduced numbers of mitochondria in the overwintering 
larvae or from reversible regulatory controls that inhibit mitochondrial function 
(McMullen & Storey, 2008). Uno et al. (2004) isolated COX subunit I in Agrius 
convolvuli species and observed some changes in abundance of its transcripts during 
pupal diapause. They detected dramatic increase of specific mRNA in the phase of 
diapause termination correlating with high activity of COX enzyme. This gene is thus 
up-regulated when diapause is terminating due to high oxygen utilization. Similar 



findings were discovered during termination of diapause in larva of the moth Omphisa 
fuscidentalis. Activation of COX subunit I correlated with increase of COX enzyme 
activity, followed by an increase in oxygen consumption rate (Singtripop et al., 2007). 
Although metabolism in insects is typically suppressed in diapause, such suppression 
in adult stages is not as extensive, so the up-regulation of two mitochondrial COX 
subunits, I and III, found in early C. pipiens diapause may not be counterintuitive 
(Robich et al., 2007). 
     Apart from other enzymes involved in direct polyol biosynthesis reactions, aldose 
reductase (AR), ketose reductase (KR) or polyol dehydrogenase (PDH), are in the 
centre of my interest. They convert sugars to sugar alcohols using NADPH or NADH 
as the reducing agents. AR or KR, constituents of the polyol pathway, belong to the  
aldo-keto reductase superfamily (AKR superfamily). The superfamily contains 115 
NAD(P)(H)-dependent oxidoreductase proteins expressed in prokaryotes and 
eukaryotes that are distributed over 14 families (AKR1-AKR14). The current 
nomenclature and up-dated database is declassified on www.med.upenn.edu/akr web 
sites (Hyndman et al., 2003). PDH, is a member of medium-chain 
dehydrogenases/reductases superfamily (MDR superfamily). MDRs constitute of large 
group of about 1000 proteins. Within the MDR superfamily, at least eight families 
were distinguished. The most well known are alcohol dehydrogenases (ADH family) 
and polyol dehydrogenases (PDH family) (Nordling et al., 2002).  
     Additional data on the enzymatic control of polyol synthesis are fragmentary. 
Another sporadic research has been accomplished in glycerol producing species 
(Protophormia terranovae, C. suppressalis), where both glycerol-3-phosphate 
dehydrogenase and glycerol-3-phosphatase activities increased during diapause and 
overwintering (Wood et al., 1977; Li et al., 2002). 
 
 
Heat shock proteins 
 
     Heat shock proteins (Hsps) appear as promising candidates participating in 
mediation of insect cold hardiness and rapid temperature stress responses (Yocum et 
al, 1998; Yocum, 2001). The Hsps are represented by five major Hsp families: small 
Hsps, 60, 70, 90 and 100 kDa Hsps, separated according to their molecular mass 
(Georgopoulos & Welch, 1993; Liang & MacRae, 1997; Denlinger et al., 2001). They 
are found in all organisms and their structure and function are highly conserved 
(Schlesinger, 1990), therefore their popularity in molecular studies is large. The 
proteins are so named because they were initially discovered in fruit flies that were 
exposed to high heat (Tissières et al., 1974). But, Hsps are expressed in response to a 
variety of environmental stresses such as heat and cold shocks, osmotic and oxidative 
stresses, heavy metal exposure, irradiation, viral infection and high population 
densities (De Maio, 1999). The increase in Hsps expression is transcriptionally 
regulated (Wu, 1995). In addition to inducible forms, the Hsps also include 
constitutive forms – heat shock cognates. The inducible forms function as molecular 



chaperones. They bind to proteins that were partially denatured during environmental 
stress and mediate either their repair or proteasomal degradation. The cognates 
promote correct folding of proteins after translation, translocation of proteins across 
membranes and also prevent the aggregation of proteins in an unstressed cell (Craig et 
al., 1994; Feder & Hofmann, 1999; Borges & Ramos, 2005). 
     Although it has been well established that Hsps participate in heat shock response, 
their roles during diapause development and cold exposure are still not well 
understood in insects. The most studied transcript is the inducible form of hsp70. Up-
regulation of hsp70 mRNA levels in response to low temperature was reported in 
several insect species: Drosophila sp. (Goto & Kimura, 1998), L. decemlineata 
(Yocum, 2001), Delia antiqua (Chen et al., 2006) and Liriomyza huidobrensis (Huang 
et al., 2007). Relatively high levels of mRNA transcripts for Hsps were also detected 
in diapause insects during overwintering (Rinehart et al., 2000; Hayward et al., 2005; 
Yocum et al., 2006) and in the larva of Antarctic midge, Belgica antarctica (Rinehart 
et al, 2006). Such observations led the authors to speculate on the role of Hsps in 
insect cold tolerance. Current evidence suggests, however, that mRNA levels provide 
little information on protein abundance and activity (Feder & Walser, 2005) and that 
detailed functional studies are needed to elucidate the influence of candidate genes on 
phenotype. Up-regulation of Hsps at a protein level was verified in the fruit flies 
exposed to cold (Burton et al., 1988; Sejerkilde et al., 2003), and in the pupae of flesh 
fly, S. crassipalpiss during diapause (Li et al., 2007). The most complex study has 
been done on the flesh fly S. crassipalpis (Joplin et al., 1990; Yocum et al., 1998; 
Rinehart et al., 2000; Hayward et al., 2005). They propose that up-regulation of Hsps 
during diapause or cold stress is a major factor contributing to cold-hardiness of 
overwintering insects. However, to our knowledge, the only direct evidence obtained 
so far for positive role of heat shock proteins in insect cold tolerance is that by 
Rinehart et al. (2007) who injected the hsp23 and hsp70 dsRNAs (double-strand 
RNAs) into the pre-diapause larvae of S. crassipalpis, and observed dramatic decrease 
of mRNA levels in pupae and a significant loss of their cold tolerance. 
 
 
Cold acclimation and cold hardiness in P. apterus 
 
    Adults of P. apterus enter into facultative reproductive diapause before 
overwintering.  Diapause is an essential prerequisite for their succesful overwintering 
as it allows the process of autumnal acclimatization to proceed. Thus, the level of chill 
tolerance is much higher in diapausing than in non-diapausing (reproducing) 
individuals of P. apterus (Šlachta et al., 2002). Diapausing adults overwinter in a 
supercooled state and do not tolerate freezing of their body fluids. They decrease their 
supercooling point (SCP, temperature of spontaneous ice crystalization) down to the 
minimum between -16°C and -21°C (Hodková & Hodek, 1997; Košťál & Šimek, 
2000).  



     Very high amounts of nutrient reserves, in the form of glycogen, triglycerides and 
hexameric proteins, were found in the fat body and haemolymph of diapausing 
individuals (Šula et al., 1998; Košťál et al., 2004a). Glycogen stores are considered to 
serve as the principal source of carbon for polyol biosynthesis at low temperatures 
(Storey & Storey, 1991). In accordance with this view, the glycogen reserves are 
depleted during cold-acclimation (Košťál et al., 2004a). 
     No information is available about the potential mechanisms preventing water 
evaporation or ice penetration through the cuticle. The process of cold-acclimation, 
however, is accompanied with partial dehydration (loss of approximately 10% of body 
water), which affects primarily the haemolymph compartment. Thus, the body water is 
partially redistributed and a ‘reserve’ of hypo-osmotic fluid accumulates in the 
hindgut. Diapausing cold acclimated adults of P. apterus show a good ability to 
maintain ion gradients across cell membranes when exposed to subzero temperatures 
(Košťál et al., 2004c). 
     Field and laboratory experiments were conducted to study changes in membrane 
composition during overwintering. Changes in relative proportions of major molecular 
species of glycerophosphoethanolamines (GPEtns) and glycerophosphocholines 
(GPChols) in two different tissues (fat body and thoracic muscle) were followed. The 
relative proportion of total GPEtns increased, while the proportion of total GPChols 
decreased during autumnal acclimatization in the field. The relative proportion of 
unsaturated fatty acyls slightly decreased. A similar restructuring response was seen 
during cold-acclimation in the field and in the laboratory (Hodková et al., 1999; 
Tomčala et al., 2006). 
     Mechanisms of antioxidant defence have not been studied in P. apterus. Protective 
components such as AFPs have not been found in this species (Košťál, unpublished 
results). Since P. apterus belongs to freeze intolerant species, INAs are not produced. 
No evidence of presence of LEAs has been provided yet. 
     The seasonal increase of cold tolerance coincides in time with the accumulation of 
four "winter" polyols (ribitol, sorbitol, mannitol, arabinitol) in diapausing P. apterus 
adults (Košťál & Šimek, 2000). The accumulation is triggered by ambient 
temperatures below a threshold of 5°C (Košťál et al., 2001). A tight relationship 
between total concentration of winter polyols and cold hardiness has been revealed 
(Košťál & Šlachta, 2001). Relatively low concetrations of polyols (without any 
significant colligative effect on SCP) have been found to be sufficient to enhance 
survival at sub-zero temperatures (Košťál et al., 2001). Metabolic adjustments for 
polyol biosynthesis in P. apterus and transcription of genes coding for polyol 
biosynthetic enzymes are presented in this Thesis in detail (Košťál et al., 2004a/b; 
Tollarová, 2008; Košťál et al., 2008). 
     Hsps in context to temperature stress in the adult P. apterus have not been studied 
so far and our results bring the first data (Košťál & Tollarová-Borovanská, 2009). 
     
  
 



Aims of research 
 
1. To conduct a detailed physiological and biochemical study focused on the process 
of polyol biosynthesis and accumulation in diapausing adults of Pyrrhocoris apterus. 
To asses the building and degradation of glycogen reserves, the activities of selected 
enzymes involved in energy and polyol metabolism, and the levels of winter polyols in 
variously acclimated adults of P. apterus. 
  
2. To clarify the triggering mechanisms for seasonal restructuring of membrane 
phospholipids in the overwintering adults of P. apterus.  
 
3. To bring new insights into the diapause physiology of P. apterus by employing the 
molecular methods. To clone and sequence the genes coding for proteins implemented 
in energy metabolism (citrate synthase, cytochrome c oxidase), polyol cryoprotectant 
biosynthesis (aldose reductase, polyol dehydrogenase), and stress response (70 kDa 
heat shock proteins) and to study their regulation in relation to diapause and cold-
acclimation. 
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Abstract 
 
 Expression of heat shock proteins has been proposed as an underlying 
mechanism of increased cold tolerance in insects exposed to fluctuating thermal 
regimes (FTRs) in comparison to constant low temperatures (CLTs). We found that 
the levels of Pahsp70 mRNA increase by up to 3 orders in the linden bugs, 
Pyrrhocoris apterus exposed to FTR -5ºC (22h)/ 25ºC (2h). The 2h-long warm pulses, 
however, were not sufficient for accumulation of PaHSP70 protein and thus no 
significant difference in expression of PaHSP70 protein was detected between FTR 
and CLT regimes. Hence, we conclude that the accumulation of PaHSP70 protein is 
not the mechanism underlying the increased cold tolerance in P. apterus at the 
particular FTR used in this study. The relevance of some other possible mechanisms is 
discussed. 
 
Keywords: insect; cold tolerance; heat shock proteins; fluctuating thermal regime
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Summary of results 
 

1. Enzymatic capacity for accumulation of polyol cryoprotectants changes during 

diapause development in the adult red firebug, Pyrrhocoris apterus  

 

- Glycogen stores were rapidly accumulated during the early phase and slowly 

depleted during the late phase of diapause development. Reduction of 

glycogen stores during the cold treatment was relatively constant throughout 

the whole diapause. 

- Except phosphofructokinase-1 (PFK-1), all studied enzymes (glycogen 

phosphorylase, GPase; glucose-6-phosphate dehydrogenase, G6PDH; polyol 

dehydrogenase, PDH; aldose reductase, AR; and ketose reductase, KR) 

displayed a rapid increase in activity during the early phase and, during the late 

phase, activities remained stable or slowly decreased. The activity of PFK-1 

was either stable or moderately increased with diapause progression. In 

response to cold treatment: (i) the activity of a form of GPase decreased; (ii) 

no change in G6PDH activity was observed; and (iii) the activities of PDH, AR 

and KR decreased. 

- No polyols were accumulated during diapause development at high 

temperatures. Rapid accumulation of polyols appeared in temperatures below a 

threshold of about 5ºC. 

 

2. Adjustments of the enzymatic complement for polyol biosynthesis and 

accumulation in diapausing cold-acclimated adults of Pyrrhocoris apterus 

 

- No significant changes were found in the content of fat body glycogen in both 

diapausing or non-diapausing bugs during cold-acclimation. In non-diapausing 

adults, the glycogen content was much lower than in diapausing individuals. 

- Activities of GPase (total) and PFK were similar in non-diapause and diapause 

specimens. Almost 100% of GPase was present in its active a form in non-

diapausing adults. In diapausing adults, the GPase inactive b form (about 60%) 

was activated upon transition to 0ºC, which probably coincided with the 

accumulation of polyols at such sub-threshold temperature. Profound 



differences were detected between non-diapause and diapause specimens in the 

activities of G6PDH, AR and PDH. The activity of KR, was observed 

exclusively in the diapausing individuals. KM values of PDH and KR and their 

electrophoretic mobilities in native polyacrylamide gel differed clearly. 

- The capacity to accumulate winter polyols during cold-acclimation was 

restricted to the adults that have previously entered diapause. No polyol 

accumulation was observed in non-diapausing group. 

 

3. Seasonal acquisition of chill tolerance and restructuring of membrane 

glycerophospholipids in an overwintering insect: triggering by low temperature, 

desiccation and diapause progression 

 

- Relative proportion of glycerophosphoethanolamines increased, while the 

proportion of glycerophosphocholines decreased during autumnal 

acclimatization in the field and cold acclimation in the laboratory. The relative 

proportion of unsaturated fatty acyls slightly decreased. 

- Overall glycerophospholipid changes after desiccation and diapause 

progression were relatively small. 

 

4. Seasonal activity-profiles of enzymes involved in cryoprotectant biosynthesis in 

Pyrrhocoris apterus 

 

- Activities of enzymes involved in polyol biosynthesis (AR, KR and PDH) 

were low in reproductive adults. By contrast, greater activities were observed 

in reproductively arrested individuals. 

- AR and KR showed similar seasonal trends: activities were low during 

diapause initiation, then increased and stabilized during further phases, another 

rapid increase was seen during low temperature quiescence and the activities 

sharply decreased during resumption of active development. 

- PDH activity was high during diapause, then decreased in quiescent bugs and 

almost disappeared in insects with resumed development. 

- Clear relationship between high activities of AR, KR and PDH and the 

capacity to accumulate polyols in only diapausing P. apterus was supported. 

 



5. Dynamism in physiology and gene transcription during reproductive diapause 

in a heteropteran bug, Pyrrhocoris apterus 

 

- Dynamism of diapause development was characterized using (i) physiological 

parameters: time to oviposition, photoperiodic responsiveness, oxygen 

consumption, mass and hydration; and (ii) changes in transcription of genes 

involved in energy metabolism, cryoprotectant biosynthesis, biological clocks 

and hormonal receptors. 

- Genes coding for AR and PDH appeared to be promising molecular markers of 

diapause development. 

- Changes in diapause intensity served as a basis for recognizing successive 

phases of diapause. 

 

6. The 70 kDa heat shock protein assists during the repair of chilling  injury 

 in the insect, Pyrrhocoris apterus 

 

- The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70) and 

cognate forms (PaHsc70) were cloned and sequenced. 

- PaHsp70 were significantly up-regulated in response to high and low 

temperature stimuli. PaHsc70 was slightly up-regulated in response to both 

stressors, but very low or no up-regulation of protein was apparent after heat- 

or cold-stress. 

- RNAi (injection of Pahsp70 ds RNA) caused drastic suppression of the heat- 

and cold-stress-induced Pahsp70 mRNA response and the up-regulation of 

corresponding protein was practically eliminated. 

- Accumulation of PaHsp70 probably belongs to a complex cold tolerance 

adaptation in the insect P. apterus. 

7. Insect cold tolerance and repair of chill-injury at fluctuating thermal regimes: 

role of 70kDa heat shock protein expression 

 

- Survival significantly increased when the insects were exposed to a fluctuating 

thermal regime (FTR) in comparison to a constant low temperature (CLT). 



- Pahsp70 mRNA levels were up-regulated during FTR. In contrast, no 

significant difference in expression of PaHSP70 protein was detected. 
- Regulation of HSP70 protein levels were shown to play insignificant role in 

the FTR response of P. apterus. 
 

Prospects for future research 
 

     The studies on polyol cryoprotectants and heat shock proteins that have been 

successfuly extended or started, respectively, during the work on my doctoral Thesis 

will continue. 

 

Polyol cryoprotectants 

 

     We plan to separate the proteins extracted from the fat body of acclimated adults of 

P. apterus using the 2D gel electrophoresis. Further, we will detect the protein spot 

with ketose reductase (KR) activity by the previously used technique (Košťál et al, 

2004b) and sequence the protein. Protein sequence will be used to target the respective 

gene. After cloning and sequencing the KR gene, we wish to express it in a suitable 

bacterial or fungal vector and verify the KR activity in the protein product.  

     The double stranded RNAs against the gene transcripts coding for polyol 

dehydrogenase (PDH); aldose reductase (AR) and ketose reductase (KR) will be 

synthesized and used for RNAi study. We hope to bring a genetic proof for the 

importance of ribitol and sorbitol accumulation in the development of cold hardiness. 

After injecting the dsRNA into the diapause adults of P. apterus we plan to study the 

effects on: (a) the gene transcription; (b) enzymatic activities; (c) accumulation of 

ribitol and sorbitol; and (d) cold hardiness.  

 

Heat shock proteins 

 

     The main objective of our ongoing study is to describe potential roles of the 70kDa 

heat shock proteins in diapausing adults of P. apterus. We will focus on changes of 

gene transcription (qRT-PCR) and protein abundance (ELISA) during the diapause 



development , and on the relative importance of Hsps in the cold tolerance of 

diapausing adults, which display many other potent mechanisms of cold hardiness.  

     Our specific aims are to: (a) distinguish between the roles played by inducible and 

cognate forms of 70 kDa HSPs; (b) clone, sequence and study the roles of HSPs 

belonging to other families (small HSPs, 90 kDa HSPs); (c) use RNAi technique as a 

tool to reveal the functional aspects of HSPs upregulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ABSTRACT 1 
 

Roles of diapause termination and cold-acclimation in cryoprotectant biosynthesis and 

accumulation in Pyrrhocoris apterus (Heteroptera). 

 

Košťál V. 1, Tollarová M. 2, Tamura M. 3, Zahradníčková H. 1, Šula J. 1 
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     Adults of the red firebug, Pyrrhocoris apterus accumulate specific "winter" polyols 

(mainly ribitol and sorbitol) at a total concentration about 100 mM when exposed at 

temperatures below 5°C. No capacity for accumulation of winter polyols was detected in the 

non-diapause adults. 

     In this study we extend our previous results and show that the diapause and non-diapause 

adults differ in several important aspects of their fat body enzymatic complement: (1) while 

95% of the glycogen phosphorylase (GPase) is present in the active a form in non-diapause 

adults, it is only 40 % in diapause adults. Inactive b form of GPase is rapidly activated upon 

exposure of diapause adults at 0°C. (2) Activity of glucose-6-P dehydrogenase (G6P-DH) is 3 

times higher in diapause than in non-diapause adults. This indicates relatively higher carbon 

flow through the hexose monophosphate shunt and higher production of reducing power in 

the form of NADPH in diapause adults. (3) NADPH-dependent aldose reductase (AR) is about 

20 times higher in diapause than in non-diapause adults. AR preferentialy converts ribose to 

ribitol. (4) NADH-dependent polyol dehydrogenase (PDH) is about 12 times higher in 

diapause than in non-diapause adults. (5) An unusual enzymatic activity, NADPH-dependent 

ketose reductase/polyol dehydrogenase (KR/PDH) was detected exclusively in diapause 

adults. Such activity was very high and, together with the activity of conventional PDH, 

might have been responsible for accumulation of sorbitol. Analysis of Km values for specific 

substrates and visualization of specific activities on PAGE gels using tetrazolium salt 

methodology confirmed that PDH and KR/PDH are different enzymes and that KR/PDH 

activity is specific for diapause adults only. 

 

TEMP 2003, International Symposium on Animal and Plant Cold Hardiness, České 

Budějovice, Czech Republic, August 10-15, 2003. 
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Activities of enzymes for cryoprotectant biosynthesis and transcription of their genes: 

roles of developmental programme and acclimation state. 

 

Tollarová M.1, Košťál V.2 
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     Many overwintering insects accumulate sugars and polyols in their tissues, which serve to 

mitigate the impact of low temperatures. The peaking cryoprotectant concentrations usually 

coincide with the most cool season in the field and the low temperature was considered as a 

main stimulus for accumulation. Here we show that a developmental trigger is necessary to 

allow polyol accumulation, in addition to temperature stimulus, in the adult bugs, Pyrrhocoris 

apterus. Comparing responses in field-collected and laboratory-reared insects we found that: 

(a) activities of two key enzymes, which participate in the final reduction of sugars (glucose, 

fructose, ribose) to their respective polyols (sorbitol, ribitol), namely NADP(H)-dependent 

aldo-keto reductase (AKR) and NADH-dependent polyol dehydrogenase (PDH), markedly 

differ according to the developmental programme. The activities are much higher in 

diapausing than in reproducing insects; (b) the activities of AKR and PDH increase during 

cold-acclimation of diapausing insects; (c) the activities differ between reproducing insects 

that passed through diapause (overwintered generation) and those without diapause (spring 

generation); (d) the transcription rates of PyrAKR and PyrPDH genes are much higher in 

diapausing than in reproducing insects. Such results indicate that preparative steps (the 

increases of gene transcription rates and of abundance of enzyme molecules) must proceed at 

relatively high temperatures, during the onset of diapause developmental programme, which 

later allows accumulation of cryoprotectants upon exposure to low temperatures. 

 
The First International Symposium on the Environmental Physiology of Ectotherms and 

Plants, Roskilde, Denmark, July 11 -16, 2005. 

 

 





ABSTRACT 3 

 

Reparation of heat and cold injury in the bug Pyrrhocoris apterus: does it require the 

expression of inducible hsp70 gene? 
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Introduction:The expression of Heat Shock Proteins (Hsps) is known to be induced by 

diverse stresses, including heat and cold shocks, desiccation, anoxia, and exposure to a wide 

range of chemicals. Hsps function as molecular chaperones binding to partially denatured 

proteins and promoting their return to native conformation. Although it has been well 

established that Hsps are developmentally up-regulated in various diapausing insects, their 

exact physiological roles during diapause are not completely clear.  

Methods: We have cloned structural homologs of inducible hsp70 and cognate hsc70 genes 

in the heteropteran Pyrrhocoris apterus, and quantified the abundance of their mRNA 

transcripts after the exposures to high (+45ºC) and low (-5ºC) temperature shocks using qRT-

PCR technique.  

Results: While the levels of hsp70 mRNA increased by about three orders (1 000 – 4 000-

fold) after the shocks, the levels of hsc70 mRNA remained constant. After the injection of 

synthetic hsp70 dsRNA (RNAi technique), we managed to diminish the shock-induced hsp70 

response to approximately 30 – 60-fold increase. Such a suppression of hsp70 expression was 

sufficient to completely prevent the recovery from heat-injury. While more than 95 % of the 

control bugs (treated by injection buffer only) recovered and were fit 3d after the exposure, 

none of the hsp70 dsRNA-treated bugs survived after the exposure to +45 ºC /5h.  

Conclusion: The results of ongoing experiments will be presented, in which we asked 

whether the recovery of P. apterus bugs after cold shock also requires the up-regulated 

expression of inducible hsp70 gene.  

 

XXIIIrd International Congress of Entomology, Durban, South Africa, July 6-12, 2008. 
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Expression of 70 kDa heat shock proteins in the bug, Pyrrhocoris apterus: What is their 

role in cold tolerance?  
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     The heat shock proteins (Hsps) were originally discovered as being induced by heat shock. 

Later, it was found that a wide array of environmental stresses, including low temperatures, 

elicit a similar response. The up-regulation of Hsp mRNA levels in response to cold, or during 

overwintering diapause, was reported in many insects. Less often, such observations were 

extended to the protein levels and only seldom, the causality of the relationship between the 

up-regulation of Hsps and cold tolerance was directly tested and proved. 

     We will report on assessing the competence of the adults of Pyrrhocoris apterus 

(Heteroptera: Pyrrhocoridae) for responding to heat- and cold-stresses by up-regulation of 70 

kDa Hsps and the role of these Hsps during repair of heat- and cold-induced injury. We found 

that the abundances of mRNA transcripts for two protein forms, inducible (PaHsp70) and 

cognate (PaHsc70), are significantly up-regulated in response to high and low temperature 

stimuli. At the protein level, only the inducible form showed a clear up-regulation response. 

Injection of 695bp-long Pahsp70 dsRNA (RNAi) caused drastic suppression of the heat- and 

cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein 

was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in 

addition, negatively influenced repair of chilling injuries caused by cold stress. Although our 

results do support the hypothesis on active participation of heat shock proteins in the insect 

cold tolerance, we will also present some data, which stress the pitfalls of over-generalization. 

 

3rd International Symposium on the Environmental Physiology of Ectotherms and Plants, 

Tsukuba, Japan, August 24-28, 2009. 

 
 
 
 



 
 
 
 


