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GENERAL INTRODUCTION 

 

The Orchidaceae is one of the largest families of flowering plants, making up 10% of 

the flowering plant species in the world (Dressler 1981). The estimated number of orchid 

species varies from 12000 to 35000 (Fiveash 1974; Sanford 1974; Alphonso 1975; Hunt 

1984; Heywood 1985; Dressler 1993). However, many of these species are rather locally 

distributed and/or generally rare (Tremblay 1997a; Koopowitz 2001; Zotz 2004; Benavides 

et al. 2005). Because of the continuing changes in land-use in both the tropics and the 

temperate zone, which frequently result in a considerable loss of suitable habitat, there is 

concern about the long-term conservation of many orchid species (e.g., Koopowitz 2001; 

Tremblay and Hutchings 2003; Vásquez et al. 2003; Wotavová et al. 2004).  

 For conservation it is important to know, what determines the number of species (species 

diversity). Determination of the factors that affect species diversity is an important topic in 

ecology (Huston 1994; Rosenzweig 1971, 1995) and has been studied at various levels, 

from local to regional. At the regional level, diversity has been related to area (species-area 

relationship; Arrhenius 1921; Gleason 1922; Williamson 1988; Palmer and White 1994; 

Rosenzweig 1995; Fridley et al. 2005; Drakare et al. 2006), available energy (species-

energy relationship; e.g., Wright 1983; Currie 1991; Wylie and Curie 1993a,b; Rosenzweig 

1995; Gaston 2000; Hawkins et al. 2003a; Pelkey et al. 2000; Evans et al. 2005; Storch et 

al. 2005), latitude (Pianka 1966; Rohde 1992; Rosenzweig and Sandlin 1997; Gaston and 

Blackburn 2000; Willig et al. 2003; Hillebrand 2004), landscape altitudinal complexity 

(Rahbek 1995), climate, productivity (Swift and Anderson 1994) or landscape 

heterogeneity (Turner 1987).  

  

1) Species-area-energy relationship 

On a global scale, the species-area relationship can be used to characterize the relationship 

between populations (metapopulations). The species-area relationship (SAR) is one of the 

few laws of ecology and has proved to be a useful tool in the study of biodiversity patterns 

(Lomolino 2001). Although the SAR was known at least as early as the eighteenth century, 

it was not until the 1920s that the relationship was mathematically quantified by Arrhenius 

(1921). The equation is S = cA
z
, where S is the number of species in a given area A, and c 



2 

 

and z are constants (z is the slope of the line and c is the initial trajectory). SARs are often 

presented as log-log plots when the Arrhenius equation becomes: log S = z *log A + log C.  

The SAR is used by conservation biologists in the study of habitat fragmentation 

(Turner et al. 1994; Brooks et al. 1997, 1999a,b; Cowlishaw 1999; Ney-Nifle and Mangel 

2000) and also for ecological applications such as design of reserves (Gilpin and Diamond 

1980; Higgs and Usher 1980) and for estimating species extinction rates (May et al. 1995; 

Pimm et al. 1995). The power law SAR has great significance in describing, in quantitative 

terms, what may be the most universally accepted ecological rule of thumb (MacArthur 

and Wilson 1976).  

Area and available energy are major determinants of species richness. First, species 

richness increases with area – the species-area relationship (SAR; Arrhenius 1921; Gleason 

1922; Williamson 1988; Rosenzweig 1995). Second, the energy available to an assemblage 

(i.e. that which it can turn into biomass) at a particular spatial resolution influences its 

species richness – the species-energy relationship (SER; e.g., Wright 1983; Currie 1991; 

Wylie and Curie 1993a,b; Rosenzweig 1995; Gaston 2000; Hawkins et al. 2003a; Pelkey et 

al. 2000; Evans et al. 2005; Storch et al. 2005). These two fundamental ecological patterns 

may be closely interrelated. Wright (1983) suggested that larger areas may contain more 

species as they have more resources that enable species populations to be larger, buffering 

them from extinction and promoting species richness (the ‘area per se’ hypothesis, 

according to Connor and McCoy 1979). Similarly, sites with more available energy may 

host more species because population densities are larger, this is often termed the more 

individuals hypothesis (Gaston 2000). Both the SAR and SER can be related to patterns of 

species abundance and occupancy. Although conclusive evidence that supports the more 

individuals hypothesis of the SER is not yet available (Currie et al. 2004; Evans et al. 

2005), there is evidence that areas with higher energy availability host not only higher 

numbers of species, but also more individuals (Kaspari et al. 2003; Hurlbert 2004). 

Moreover, Bonn et al. (2004) report that there are on average higher species occupancies 

(i.e. proportion of sites occupied by each species) in areas where the availability of energy 

is highest.  

The Normalized Difference Vegetation Index (NDVI) can be used as a measure of 

energy available to an assemblage. NDVI is strongly and positively correlated with the net 

primary productivity (Kerr and Ostrovsky 2003), and thus is a suitable measure of the 

energy available to consumers. NDVI derived from the visible and near infrared channel 
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reflectances (0.58 to 0.68 µm and 0.73 to 1.10 µm, respectively) and is highly correlated to 

surface vegetation. It is a dimensionless number with typical range from –0.200 to 0.800. 

Very low values of NDVI (0.1 and below) indicate barren areas of rock, sand or snow, 

moderate values shrub and grassland (0.2 to 0.3) and high values temperate and tropical 

rainforests (0.6 to 0.8). This data set is produced as part of the NOAA/NASA Pathfinder 

AVHRR Land program. The first AVHRR channel is in a part of the spectrum where 

chlorophyll causes considerable absorption of incoming radiation, and the second channel 

is in a spectral region where spongy mesophyll leaf structure leads to considerable 

reflectance. This contrast between responses of the two bands can be shown by a ratio 

transform; i.e., dividing one band by the other. The Normalized Difference Vegetation 

Index (NDVI) is one such ratio and is highly correlated with vegetation parameters, such 

as green-leaf biomass and green-leaf area. Hence, it is of considerable value for vegetation 

discrimination (Justice et al. 1985). 

Storch et al. (2005) used avian species distribution data for South Africa and Lesotho 

and as expected, logarithmically transformed species richness was positively related both 

to log area and log NDVI for both avifaunas. The slope of the SER was lower for larger 

areas, and the slope of the SAR was lower in areas with high-energy availability. These 

results support the theory that high levels of energy availability depress the slope of the 

SAR by elevating species’ occupancies. However, these results appear to disagree with 

some previous findings. Weiher (1999) report the opposite pattern, i.e., a positive 

relationship between productivity and the slope of the SAR so that the SAR has a higher 

slope in more productive areas. Soininen et al. (2007) report that the slope of SAR based 

on sample units of 11 km
2
 increases with latitude. Koleff et al. (2003) conclude that very 

little is known about range distributions and regional species turnover in relation to 

latitude. 

In many taxa, especially those confined to natural habitats that have decreased in area 

recently most of the species diversity is now concentrated in protected areas. The orchid 

family is a good example, as some of the enormous numbers of species are extremely 

susceptible to disturbance of their natural habitats (Kati et al. 2004; Padmawathe 2004; 

Flores-Palacios and Valencia-Díaz 2007; Jacquemyn et al. 2007). At present, protected 

areas in the agricultural/industrial landscape can be considered as habitat islands (Begon et 

al. 1990; Shriver et al. 2004; McDonald et al. 2008), i.e., islands of remnants of natural 

vegetation surrounded by a hostile landscape. For many species, including orchids, the 
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surrounding landscape is uninhabitable (Forman 1995). Thus, instead of total area, often 

the size of protected areas may be more closely correlated with species richness. In 

Schödelbauerová et al. 2009 (Paper II) it is suggested that for orchids - on the large scale 

considered - area is always very important, latitude is more important than energy available 

and protected area gives a better fit than total area in most cases. 

 

2) Latitudinal and inverse latitudinal gradient 

Differences between habitats in the number of coexisting species per unit area fascinated 

early naturalists (Darwin 1859; von Humboldt [1828] 1993) and remain a central aspect of 

ecological research (Gaston and Blackburn 2000). No single pattern of biodiversity 

attracted ecologists more than increase in species richness towards the tropics (Pianka 

1966; Rohde 1992; Rosenzweig 1995; Gaston and Blackburn 2000; Crawley and Harral 

2001; Willig et al. 2003; Hillebrand 2004; Hawkins et al. 2006; Mittelbach et al. 2007). 

An obstacle to the search for the primary cause of this latitudinal gradient has been the 

ever-increasing number of hypotheses (Pianka 1966; Rohde 1992), their interdependence 

(Currie 1991; Gaston and Blackburn 2000) and the lack of rigorous falsification (Currie et 

al. 1999). Still, such latitudinal gradients in diversity exist and need to be accounted for. 

This could indicate that the basic pattern of species distribution is not the result of a single 

evolutionary or ecological process, but rather a complex of several factors (Bokma et al. 

2001). It could also indicate that the bounded nature of global environments, even in the 

absence of any environmental gradients, produces equatorward increasing species richness 

patterns (Pielou 1977; Colwell and Hurtt 1994; Willig and Lyons 1998; review by Colwell 

and Lees 2000). In other words, the latitudinal gradient species richness might be partly a 

result of ecological and evolutionary processes, and partly a consequence of a combination 

of probability and the boundaries of landmasses in nature. 

 

Explanations of the increase in species diversity towards the tropics 

Mid-domain models use random placement of species geographical ranges in a 

domain (Earth) with hard boundaries (the poles) to predict a peak in diversity in the middle 

of this domain (equator) without invoking any ecological or evolutionary processes. 

Simulation and analytical modelling have shown that the random placement of species 

geographical ranges along a geographical gradient with hard boundaries (i.e. a domain) 
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produces a hump-shaped pattern of species richness, such that local species richness peak 

at the midpoint of the domain (Pineda 1993; Colwell and Hurtt 1994; Colwell and Lees 

2000). Grytnes (2003) proposes four possible ecological models for the creation of the 

mid-domain effect: 

1) Evolutionary model: a species may originate at any point within a domain. From this 

origin, the species may expand its range to adjacent areas, but not beyond the hard 

boundaries, even if it has the ecological potential to do so (see Bokma et al. 2001, for a 

similar model). The crucial point is that a species that originates outside the domain cannot 

expand its range over the hard boundaries and into the domain. One possible exception to 

this is that a propagule of a species from outside the domain might disperse into the 

domain causing the same species to establish within the domain (this will be the origin of 

this species within the domain) if such establishment is equally probable at any point 

within the domain. This means that areas close to the domain boundaries are not receiving 

more species from outside of the domain than any other point within the domain. This can 

happen if the distance between the domain and nearest suitable source of colonists is large 

relative to the size of the domain. 

2) Source-sink model: this model may create the mid-domain effect if sink populations are 

commonly established from source populations that appear within the domain and if hard 

boundaries prevent establishment of sink populations from source populations outside the 

domain. The source-sink model may be particularly important for altitudinal gradients 

(Rahbek 1997; Kessler 2000; Lomolino 2001; Grytnes and Vetaas 2002). Here the 

geographical distance between very different ecological conditions outside the domain may 

be considerable (low probability of establishment of sink populations). The consequence is 

that source populations outside the domain cannot establish sink population inside the 

domain. The only exception to this is that source populations may establish sink 

populations inside the domain, if establishment of such populations is equally or almost 

equally (im) probable in the whole domain. 

3) Dynamic-environment model: the environments of species are dynamic and so are the 

ranges of species. When the species adjust their distribution ranges following an 

environmental change (e.g. climatic changes) the species close to a hard boundary may 

face a problem as the hard boundary limits the possibilities for dispersal of the species. 

Hence, if the environmental conditions demanded by a species disappear from the domain, 

the species cannot migrate to another suitable area resulting in the extinction of species that 
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do not have part of their ranges inside the domain at all times (Vetaas and Grytnes 2002). 

This mechanism has also been offered as one of the explanations for Rapoport’s rule 

(Brown 1995). 

4) Range-size model: It has been hypothesized that species with small ranges have a higher 

probability of extinction (Jablonski 1986; Rosenzweig 1995). Close to the boundary, 

species ranges will tend to be smaller, as the sizes of some ranges are restricted by hard 

boundaries. Hence, a humped pattern results when more species go extinct close to the 

hard boundaries than towards the middle of the gradient.  

Subsequent tests of the mid-domain model revealed high predictive power of such 

models for both global (Lyons and Willig 1997; Jetz and Rahbek 2001; Koleff and Gaston 

2001) and regional data sets (Lees et al. 1999), whereas others found strong differences 

between predicted and observed diversity patterns (Bokma et al. 2001; Diniz-Filho et al. 

2002). Lees et al. (1999) examined the latitudinal and elevational patterns of species 

richness of a group of butterflies (the subtribe Mycalesina – cca. 67 spp.), which does not 

exhibit such a monotonic pattern (the increase in the number of species from the poles 

towards the Equator, and from high elevations down to sea-level), either for empirical 

records or for interpolated species ranges. Instead, summation of their ranges generates a 

domed curve of species richness values approximately symmetrical around mid latitudes 

within the islands, a pattern most smoothly exhibited by the wider ranging and better 

known species, and a less symmetric curve peaking near mid elevations.  

Bokma et al. (2001) created a simulation model, which suggests that random species 

distribution processes result in high species richness in the middle of a landmass. Species 

diversity increases towards the middle of a latitudinal domain in the absence of any 

geographical gradients in ecological and evolutionary processes. Their model predicts the 

highest species richness in the middle of larger areas rather than in the middle of the 

latitudinal stretch of a landmass, as predicted by earlier one-dimensional models (Willig 

and Lyons 1998). But in the case of the New World, their model predicts a two-peaked 

latitudinal pattern. The largest discrepancy with the real-world latitudinal diversity pattern 

is the low diversity predicted at mid-latitudes and the high diversity predicted at high 

latitudes. Therefore, two patterns emerge that need an ecological and/or evolutionary 

explanation: 1) the high extant diversity in Central America and 2) the low extant diversity 

in southern and central parts of North America. So, by using data on New World 

mammals, they found a high correlation between observed and predicted species richness 
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in South America, but not Central America and North America. For mid-domain models, 

latitude represents the geometric constraint imposed on the range size of species. All other 

models use latitude as a surrogate variable for one or several factors co-varying with 

latitude.  

Diniz-Filho et al. (2002) used a geostatistical approach to describe bi-dimensional 

spatial patterns in species richness of South American birds of prey (Falconiformes and 

Strigiformes) and indicate strong spatial patterns both across latitude and longitude, for the 

two groups. These patterns were then correlated with those predicted by a bi-dimensional 

null model constructed to take into account South America continental edges. Species 

richness of these two groups, especially that of the Falconiformes, seems to be strongly 

affected by biome type and shape, but it does not follow the simple null model based on 

random allocation of species ranges within continental boundaries. Also, the Andes affect 

the shape of the geographical ranges in South America and, consequently, bias the patterns 

of range overlap by chance alone, creating distinct biogeographical zones (Rapoport 1975; 

Graves 1988; Rahbek 1997; Ruggiero and Lawton 1998; Rahbek and Graves 2000, 2001).  

Gradients of decreasing energy (and water) supply (Currie 1991; Allen et al. 2002) 

and decreasing biome area (Rosenzweig 1995) toward the poles are proposed as ultimate 

causes for the latitudinal diversity decline. Allen et al. (2002) argue that temperature 

influences the diversity of terrestrial and aquatic ectotherms primarily through its effects 

on the biochemical kinetics of metabolism. Metabolic rates, in turn, dictate resource 

requirements at the level of the individual and rates of resource supply required to maintain 

communities composed of many individuals. Allen et al. (2002) used data for terrestrial, 

freshwater, and marine taxa along latitudinal and altitudinal gradients to support their 

arguments. Their results support the hypothesis that elevated temperatures increase the 

standing stock of species by accelerating the biochemical reactions that control speciation 

rates (Rohde 1992). 

Changes in the intensity or specificity of ecological interactions (competition, 

predation, parasitism) with latitude are also proposed as ultimate causes of the latitudinal 

trends in species diversity (Pianka 1966), but several recent contributions failed to observe 

consistent changes in interactions with latitude (Lambers et al. 2002; Ollerton and Cranmer 

2002). Lambers et al. (2002) show that several temperate tree species experience density-

dependent mortality between seed dispersal and seedling establishment, while ecologists 

have long postulated that density-dependent mortality maintains high tree diversity in the 
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tropics (Janzen 1970; Coley and Barone 1996; Leigh 1999; Harms et al. 2000). The 

proposal that resources are divided more finely amongst a greater number of species in the 

tropics, compared to temperate communities (MacArthur 1972; Janzen 1973), suggests that 

tropical organisms should indeed be more ecologically specialised. However, the low 

species diversity at very high latitudes may also lead to apparent ecological specialisation 

in species interactions. In this case, the resulting latitudinal trend would be hump-backed – 

high specificity of interactions in the tropics and towards polar regions, with much lower 

specificity (greater generalisation) in temperate latitudes. Interestingly, the extremes of the 

gradient would show greater specialisation in interactions for diametrically opposite 

reasons – in the tropics because of high species diversity and consequently finer division of 

resources, in the polar areas because of low species diversity and therefore lack of 

opportunity for species to be more generalised. Ollerton and Cranmer (2002) assembled 

two independent data sets, which suggest that plant-pollinator interactions are not more 

ecologically specialised in the tropics compared to temperate latitudes. This is in contrast 

to the prevailing view that tropical ecological interactions tend towards higher specificity 

than their temperate counterparts. They used a data set of plant-flower visitor interactions 

in 35 communities at different latitudes and a data set on pollinators of various asclepiad 

species (subfamily Asclepiadoideae of the Apocynaceae sensu l. Endress and Bruyns 

2000).  

The effective evolutionary time hypothesis (Rohde 1992) assumes higher speciation 

rate in the tropics to be the major process increasing diversity at low latitudes. The higher 

diversification is based on energy being positively associated with mutation rates and 

negatively with generation time (Cardillo 1999), on temporal stability in geological time 

scales enhancing clade persistence (Jansson and Dynesius 2002) and on area size being 

positively associated with speciation rate (Losos and Schluter 2000). They show that 

Anolis lizards on Caribbean islands meet several expectations of the evolutionary theory. 

Within-island speciation exceeds immigration as a source of new species on all islands 

larger than 3000 km
2
, whereas speciation is rare on smaller islands. Above this threshold 

island size, the rate of species proliferation increases with island area, a process that results 

principally from the positive effects of area on speciation rate. Also as expected, the slope 

of the species-area relationship jumps sharply above the threshold. 

Rapoport’s rule (Rapoport 1975, 1982) is the next general mechanism believed to 

regulate species diversity along the latitudinal continuum from the tropics to the poles. 
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Rapoport’s rule predicts that organisms from low latitudes have narrower tolerances for 

climatic conditions than high-latitude species. Consequently, tropical latitudes appear as a 

finer mosaic of distinctive microclimates to a tropical organism than to temperate or polar 

organism (Stevens 1989). This pattern is explained (Stevens 1989, 1992) on the basis of 

climatic variation and tolerance ranges; high-latitude environments are expected to have a 

greater annual range of climatic conditions than low-latitude environments, therefore 

favouring the evolution of eurytolerant species, with larger geographic ranges than those 

evolved in the less variable, tropical environments. Thus, low-latitude organisms should be 

characterized by a broadening of climatic tolerance as compared to low-latitude organisms. 

As a consequence of a small geographic range, most low-latitude localities will have 

relatively more species near the margin of their geographic ranges than high-latitude sites. 

Populations near the margin, although poorly adapted to the local conditions, are not 

locally excluded because of the continuous arrival of migrants from areas, where the 

species does well, and thereby inflating species richness. Several reviews have made the 

point that greater habitat heterogeneity of tropical areas does not fully account for the 

gradient in species richness because even comparable habitat types support more species in 

tropical than in extratropical latitudes (MacArthur 1965, 1969; Whittaker 1969). The 

increased environmental sensitivity of low-latitude organisms does not result in an increase 

in the number of obvious ecotones in the tropics, but produces greater heterogeneity in the 

success of organisms exploiting a given location. The heterogeneity may allow for species 

coexistence that might otherwise be impossible (Stevens 1989). He also suggests that (i) 

tropical species with narrower geographical ranges have narrower environmental 

tolerances or narrow niches, (ii) their narrower tolerances would lead to greater spatial 

heterogeneity of their distributions, and (iii) a „rescue effect” operates such that patches 

where species do well supply individuals to patches, which cannot maintain viable 

populations. Several researchers (Connell 1978; Hubbell 1979, 1980; Huston 1979) have 

proposed a non-equilibrium hypothesis to account for the high species richness of tropical 

forests. In its usual form, this approach involves some kind of disturbance to the 

community. The problem for proponents of these explanations is that even in non-

equilibrium conditions competitively inferior species are eventually become extinct in 

disturbance models (Hubbell 1980). Rapoport’s rule should, in turn, influence SARs 

because in regions containing species with large ranges, the accumulation of species as 

area increases should be slower than in regions with higher rates of endemism (Stevens 

1989; Arita and Rodríguez 2002). This suggests a connection between LDG and SAR 
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patterns: SARs should be steeper at lower latitudes and decline as the average species 

range size increases toward the poles (MacArthur 1965, 1969; Lyons and Willig 2002). 

Niche breadth is also positively associated with latitude (the latitude-niche breadth 

hypothesis – MacArthur 1972) and niches become narrower toward the tropics. This idea 

has also been frequently considered as an explanation for the latitudinal patterns in species 

richness (Vazquez and Stevens 2004) that are described for all continents, except 

Antarctica, throughout much of geological time and for most higher taxa of plants and 

animals (Willig et al. 2003; Hillebrand 2004). MacArthur (1972) suggests that because of 

greater stability and lower seasonality in tropical than in temperate regions, populations at 

low latitudes should be more stable than populations at higher latitudes; in turn, greater 

population stability should allow narrower niches. He argued that populations of specialists 

should be more temporally variable than those of generalists and that tropical regions are 

less environmentally variable, have lower levels of abiotic stress, higher productivity and 

higher habitat heterogeneity than temperate regions. He also hypothesized that because of 

the lower environmental variability in the tropics there is a lower risk of the species there 

becoming extinct.  

Some groups of organisms, however, show an opposite trend: a strong latitudinal 

decline in species diversity towards the tropics. These trends have been almost neglected in 

the literature and little is known about their underlying ecological and evolutionary causes. 

Therefore, the ecological explanations offered are usually specific to the group in question. 

In Kindlmann et al. (2006) (Paper III) the existing hypotheses explaining this 

phenomenon are summarized and the evidence that tends to favour each hypothesis is 

presented. 

 

3) Orchid diversity in Chitwan 

Several studies in Neotropical forests (e.g., Frei 1973) indicate that certain epiphyte 

species show marked preferences for particular species of trees (phorophyte), whereas in 

other studies little or no host specificity is recorded (Trapnell and Hamrick 2006, 

Zimmerman and Olmstead 1992). Generally, epiphytes occur on a number of different 

phorophytes, in variable frequencies (Benzing 1990) and different host specificities, the 

exclusive presence of one epiphyte species on one host species, was rarely observed 

(Tremblay et al. 1998). Possible mechanisms for host-tree or phorophyte specificity 



11 

 

involve microclimate (Callaway et al. 2002), tree architecture (Zotz and Andrade 2002), 

water retention capacity (Castro-Hernández et al. 1999; Callaway et al. 2002), bark 

sloughing, presence of certain bark chemicals (Frei and Dodson 1972), other bark 

characteristics (Benzing 1981), allelopathic components (Frei and Dodson 1972; Benzing 

1990) and distribution of mycorrhizal fungal symbionts. Epiphytic orchids have 

mycotrophic nutrition (carbon, other nutrients and possibly water are supplied to the plant 

by mycorrhizal fungi) and require a mycorrhizal symbiont for seed germination 

(McKendrick et al. 2000, Otero et al. 2005). 

Epiphytic communities are ideal systems for evaluating species-specific interactions. 

Epiphytes need trees for their survival but because the relationship is mainly in one 

direction, it is facilitative. Because trees appear to simply provide a substrate above the 

forest floor, the expectation is that these orchids will not be associated with particular 

species of trees (Callaway et al. 2002). However, many correlative studies have shown that 

epiphytes tend to be observed growing more frequently on certain species of trees 

(Johansson 1974; Benzing 1981; Bennett 1986; Ter Steege and Cornelissen 1989; Migenis 

and Ackerman 1993; Dejean et al. 1995; Kernan and Fowler 1995), and that various 

characteristics of tree species correlate with the presence and abundance of epiphytes (Frei 

and Dodson 1972; Schlesinger and Marks 1977). 

Orchids in the Himalayan region have been studied over a long time (Duthie 1906; 

Banerji 1978, Amatya 1982; Paudyal 1982; Banerji and Pradha 1984), but there is neither 

data, nor any other information on orchids in the lowlands of Nepal, where most studies 

have focused on the higher animals and plants. 

 

4) The metapopulation concept 

In the past few years, the metapopulation concept has become widely and firmly 

established both in population biology and nature conservation, especially in the context of 

species protection in habitats, which are becoming increasingly fragmented (Hanski and 

Gilpin 1997). Habitat destruction and fragmentation have restricted an increasing number 

of plant species to small and isolated populations. Even in intact habitat remnants these 

populations face an increased risk of extinction because of environmental, demographic 

and genetic stochasticity. Random fluctuations in environmental conditions that affect 

survival and reproduction are considered to be the most important stochastic factor (Boyce 
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1992; Menges 1992), whereas demographic stochasticity, i.e., deviations from expected 

rates of survival and reproduction due to sampling error in finite populations, is considered 

to be of minor importance (Menges 1991).  

The challenge of any population viability analysis is to predict future state of a 

population. Numbers of plants of many orchid species are declining. Changing this trend 

requires intervention and adoption of new management regimes, but it is necessary to have 

full knowledge of their potential effects. For small populations of endangered species the 

population decline may be irreversible. The potential consequence of a change in 

management for a population should, whenever possible, be subject to predictive 

modelling (Tremblay and Hutchings 2003). Predicting the number of individuals may be a 

desirable objective, but realistically for small populations predicting the likelihood that a 

population will go extinct within a specific period of time is more useful. The problem 

with small and isolated populations is that they are expected to have a higher probability of 

extinction because of higher demographic, environmental and /or genetic stochasticity 

(Goodman 1987; Menges 1991; Fisher and Matthies 1998). In isolated populations, genetic 

drift may eventually reduce genetic variation (Lacy 1987; Frankham 1996), especially 

because effective population sizes are usually much smaller than the number of 

reproductive individuals in a population (Frankham 1995). Populations with low genetic 

variability have a reduced potential to adapt to environmental changes (Ellstrand and Elam 

1993). Reproduction of plants in small populations may also be negatively affected by a 

reduction in the diversity of incompatibility alleles (Byers 1995). Species are rarely 

distributed uniformly in space but are made up of separate populations, interconnected to 

varying degrees through dispersal. The clustering of individuals into local populations, the 

sizes of which vary in time and space, influences the genetic structure of a species. Genetic 

differences between local populations will evolve over time when there is little or no gene 

flow between them (Wright 1943, 1946). As a result of this spatial structure, the 

demography and genetics of populations will be a product not only of local environmental 

conditions but also processes operating at a regional scale (Husband and Barrett 1996). 

Few studies have examined, in detail, the distribution and demography of plants at a 

regional scale. These studies indicate that plants are never uniformly distributed, but rather 

occurred in clumps (Erickson 1943; Antonovics et al. 1994; Husband and Barrett 1996), 

even when the habitat appeared to be relatively homogenous (Carter and Prince 1988).  
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Terrestrial orchids produce tens of thousands of seeds during their lifetime (Arditti 

1992; Willems et al. 2001), so even a small number of fruits should potentially yield a 

sufficient number of recruits. Seeds are small and light, which provides them with a highly 

efficient means of dispersal. Orchid seeds can be dispersed over great distances, colonizing 

islands 100s or 1000s of kilometers from the nearest seed source (Arditti and Ghani 2000). 

However, it is likely that the majority of orchid seed falls close to the mother plant 

(Dressler 1990). As their populations, on average, do not grow in numbers, one individual 

gives rise, on average, to only one offspring that achieves reproductive age. This illustrates 

the enormous mortality rates these species suffer during germination and the juvenile 

stages. The ability to successfully colonize a patch is likely to be dependent on a large 

number of variables. Newly colonized patches are usually small and small population sizes 

are innately uncertain, consequently in order to evaluate the probability of colonization are 

also needs to consider stochastic events. There are four types of stochastic variation that 

may influence colonization, demographic, environmental, genetic and catastrophes. In 

orchids, a number of demographic, environmental and catastrophic events may account for 

the observed patterns. Even though particular environmental conditions may be necessary 

for the colonization of a new site by orchids, nevertheless the most important factor is the 

presence of the appropriate fungi for seed germination. Orchid seeds lack endosperm and 

require mycorrhizal fungi for germination, at least until the protocorm becomes 

photosynthetic. Thus, empty patches close to occupied ones, may be unsuitable because 

they lack the necessary fungi for germination (Bayman et al. 2002). The likelihood of 

colonization can be also affected by the extent to which the substrate is covered by moss 

(Tremblay et al. 1998), quality and quantity of light (Fernández et al. 2003) or ambient 

humidity. So their effectiveness as colonizers is probably limited far more by their usually 

rather precise habitat requirements and by the necessary co-occurrence of their mycorrhizal 

associates, than dispersal.  

Detailed demographic studies using stage-structured matrix models can reveal critical 

stages in the life cycle and provide the basis for the modelling of population dynamics 

(Hutchings 1991; Menges 1998). Sensitivity and elasticity analysis can be used to identify 

potential data shortages and management targets because changes in vital rates with high 

sensitivity or elasticity are likely to have the greatest influence on the population growth 

rate (Caswell 1978; de Kroon el al. 1986; Brault and Caswell 1993; Caswell 2000). When 

species have metapopulation structures, conservation efforts need to be directed towards 
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the preservation of suitable habitats. If metapopulation processes are weak, conservation 

efforts should be directed at existing populations (Tremblay et al. 2006). Population 

viability analysis (PVA) is used extensively in conservation biology to predict both the risk 

of extinction faced by populations and species and the efficacy of management strategies 

that seek to mitigate these threats (Shaffer 1981; Gilpin and Soulé 1986; Boyce 1992; 

Burgman et al. 1993; Possingham et al. 1993). Typically, information on population 

growth is obtained from tag-recapture data in which the numbers of organisms achieving 

the next stage (or size) or remaining in the current stage is recorded (Caswell 1989; Ebert 

1999). In Lepanthes spp., survivorship (Tremblay 2000; Tremblay and Ackerman 2001) 

and reproductive effort are more highly correlated with developmental stage than age 

(Tremblay and Hutchings 2003). However, growth transitions for rare species are likely to 

be based on data that are few and scattered and small sample sizes can result in errors 

when calculating growth transitions.  
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SCOPE OF THE THESIS 

 

In this thesis I investigated the various factors that might determine species diversity, 

using mainly orchids as a model group. These factors were area, energy available, latitude 

and metapopulation interactions within a species. 

To determine the relative importance of total area, size of protected areas, energy 

available and latitude, data were collected on species richness of orchids for various 

countries worldwide, the influence of area was then factored out and the residuals then 

correlated with the mean Normalized Difference Vegetation Index (NDVI), as a measure 

of energy available at particular locations and latitude. This was done for both the total 

area and the size of the protected areas in the countries, in order to determine the better 

predictor (Papers I and II).  

Paper III indicates that not all species show a typical latitudinal gradient but that 

their abundance declines towards the tropics. These trends are rarely mentioned in the 

literature and little is known about their underlying ecological and evolutionary causes. 

Therefore, the ecological explanations proffered are usually specific to the group in 

question. This paper presents an account of the most important cases of inverse latitudinal 

gradients. The existing hypotheses explaining this phenomenon are summarized and the 

evidence that tends to favour each of these is presented. 

Paper IV gives an account of the general status and distribution of orchids in one 

important lowland region, the Chitwan district. This includes the Chitwan National Park 

(CNP), Barandabhar corridor forest (BCF) and the Mahabharat range (MR), where the 

association of the orchids with particular species of common trees etc. was recorded. This 

paper introduces this topic and will be followed by a manuscript with more comprehensive 

analysis. 

Paper V predicts population growth pattern based on monthly surveys over a period 

of more than 1.5 years. Conservation biologists need models that can predict population 

persistence and methods for determining the accuracy of the predictions (either of growth, 

reduction or stability). In addition, sensitivity and elasticity analyses were used to identify 

potential management targets because changes in vital rates with high sensitivity or 

elasticity may have the largest influence on the population growth rate. These populations 

were also re-censused 13 years later and the results evaluated in terms of whether the 
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population changed as the model predicted, and whether 13 years is enough to achieve a 

stable distribution.  
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SUMMARY OF RESULTS AND DISCUSSION 

 

Initially the null hypothesis that species richness increases with increasing NDVI was 

tested, but there was no significant trend. Because the influence of ln(mean NDVI) or 

ln(max NDVI) on species richness was very weak ln(area) was used as the next 

independent factor. Multiple regression with ln(species richness) as the dependent factor 

and ln(area) and ln(mean NDVI) or ln(max NDVI) as predictors indicate a significant 

influence of ln(mean NDVI) and ln(max NDVI) in Africa (positive trend) and Eurasia 

(negative trend). Data sets for the whole of America and the world did not reveal any trend. 

Because NDVI did not explain the variability in the data, mean latitude was used as the 

next independent factor. A significant influence of latitude was recorded in all regions, 

with species richness decreasing with latitude. Evident outliers (Somalia and Sudan in 

Africa; Eastern Karnataka in Eurasia; and Somalia, Sudan, Eastern Karnataka, Ethiopia 

and Morocco in the whole world data set) with large areas of uninhabitable land were 

excluded from the analyses. For the data set for the whole world latitude was used to 

demonstrate the decrease in species richness from the tropics to the pole (Paper I). 

Because the results of the first study were not as predicted the size of protected areas in 

a country and size of the total area were used to determine, which is the better predictor. 

When the Residual Sums of Squares (RSS) were compared protected area predicted the 

number of species better than the total area of the country for 3 out of 5 continents, the 

prediction for tropical America was almost the same and only for Europe was the total area 

a slightly better predictor. The explanation for Europe is that many European orchids thrive 

in unprotected agricultural meadows and are maintained by regular mowing (Janečková et 

al. 2006). Other species are confined to forests, which are usually not protected in Europe. 

In tropical America, only in a few countries are significant areas protected: Venezuela 

(34.4%), Belize (27.5%), French Guyana (14.4%), Surinam (11.3%) and Bolivia (11%); 

the mean for the remaining countries is 5.3% (The Environmental Information Portal, 

http://earthtrends.wri.org/searchable_db). The influence of ln(NDVI) on species richness, 

after the effect of total or protected area was removed, was again very weak and a positive 

trend was observed again for Africa, but this may be due to special geographical 

conditions: the two countries with the lowest species richness and NDVI (Sudan and 

Somalia) are extremely dry, so that most of the area lacks vegetation and is uninhabitable 

for orchids. The low orchid species richness here may also be due to insufficient research 
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due to the political situation. A negative correlation was observed for tropical America, 

while no significant correlation (p > 0.05) was found for any other continent. There is 

considerable empirical support for a positive correlation between species richness and the 

energy available (Waide et al. 1999; Mittelbach et al. 2001; Hawkins et al. 2003a,b; Storch 

et al. 2005). In our case, however, latitude was much better correlated with the residuals of 

orchid species richness normalized per unit area, Restot and Resprot, than ln(NDVI). The 

explanation of the lack of a correlation between ln(NDVI) and Restot, and between 

ln(NDVI) and Resprot, may be that on a small scale, energy availability may be important 

but on a large (continental) scale climate (dependent on latitude) takes priority. The 

following example may serve as an illustration: more species are expected to be found in a 

forest than a meadow at the same latitude and many more species in a tropical forest, than 

a temperate forest. The latter dependence overshadows the former. Thus latitude and 

energy available may be positively correlated (tropical vs. temperate forest), but the lack of 

a correlation between the amount of energy available and orchid species richness may 

occur, for example, if energy availability increases towards the tropics more slowly than 

the number of orchid species. The positive outliers are Malawi, Zambia and Zimbabwe in 

Africa and Mexico in America. The negative outliers are Ethiopia and Eritrea, Somalia and 

Sudan in Africa, Cambodia, Pakistan and Korean peninsula in Asia, and French Guyana 

and Surinam in South America. The reasons for these deviations from the trend may stem 

from (1) more extreme geographic conditions (e.g., the Ethiopia, Eritrea and Sudan and 

Pakistan are clearly mostly arid countries); (2) lack of intensive floristic research, which 

may be the case for Somalia and Cambodia – countries not favoured by orchidologists due 

to their current or former instability; (3) inverse targeting of specific countries for research: 

in Europe, where the correlation is very tight, Turkey – a frequent destination of orchid 

“hunters” – is far above Portugal, which is in a similar latitude, but has a lower orchid 

diversity. However, this could be an edge effect due to the Atlantic and less stable, oceanic 

climate. Alternatively, the high species richness as a function of “orchid hunters” could be 

the result of taxonomic inflation – taxonomic splitting. It would be interesting to explain 

why Malawi is so conspicuously above and French Guyana and Surinam below the 

regression line. Can topographical variability or the historical past, such as the British 

pastime of natural history collecting, explain the former and landscape flatness the latter 

deviation? (Paper II).  
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In some cases, species diversity of the group in question depends more strongly on 

some biotic or abiotic factor (e.g., energy available, abundance of a “keystone” predator) 

than on latitude: (1) Southern parts of North America are considerably drier and have 

accordingly a lower plant productivity, measured, for example, by the Normalized 

Difference Vegetation Index, NDVI, than more northern areas. That is why the species 

richness of the North American breeding birds also declines towards the south, which 

accords with the prediction of the species-energy relationship that there is a positive 

correlation between species richness and plant productivity. (2) The increase in species 

richness with latitude of invertebrates, protozoa and bacteria that inhabit the pitchers of 

Sarracenia purpurea L. can be explained by the important “keystone” role that predation 

plays in structuring this community. As the abundance of the top predator, a filter-feeding 

mosquito, decreases, a greater number of taxa in the lower trophic levels (protozoa and 

bacteria) are able to persist. (3) The inverse latitudinal pattern shown by seaweeds is the 

result of the coexistence along the coastlines of Peru and Chile of species with different 

geographic origins. This region is characterized by high endemism (32.3% of the flora) and 

a very unequal contribution of tropical (3.4%) and sub-Antarctic (34.4 %) species. The 

number of tropical species decreases towards the South Pole, while the sub-Antarctic 

elements increase. However, sometimes it is more difficult to account for the pattern. This 

is especially the case for ichneumonids and aphids for which three hypotheses are 

proposed. The “resource fragmentation hypothesis” (RFH) has been used to explain the 

inverse latitudinal trends in species richness of Ichneumonidae. It assumes that as species 

richness becomes very high, the increasing number of potential host species does not 

support an increasing richness of parasitoid species because each of the additional potential 

host species is too rare to be exploited by specialist parasitoids. To overcome resource 

fragmentation, tropical Ichneumonids must be more polyphagous, or better at finding rare 

hosts. The “nasty host hypothesis” (NHH) is based on the observation that toxicity is more 

common in tropical than in temperate plant communities and that plant allelochemicals in 

host tissue can injure immature parasitoids. Thus it is proposed that increased toxicity, 

accompanied by a great variety of toxins, may make hosts in the tropics less accessible to 

parasitoids, leading to the observed decline in species richness. The “common host 

hypothesis” (CHH) assumes that inverse latitudinal trends in species richness should be 

found in groups, in which species are characterized by five main attributes: (1) host 

specificity, (2) necessity to look for a host periodically, (3) random host search, (4) short 

time available to find a host and (5) the species richness of the group, to which their host 
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belongs, increases towards the tropics. Aphids are an ideal group, because they satisfy all 

these attributes. Most aphids feed on only one or a few species of plants, or host alternate 

between two plant species, a winter host and a summer host (1), and because of their 

enormous population growth rates, they frequently overexploit their host plants and then it 

is advantageous for individuals to fly off and seek hosts elsewhere (2), and their small size, 

they have little control of the direction of their flight, and therefore search for their host 

plant at random (3). It is advantageous for aphids to have short generation times. Thus 

migrant aphids have only a short time to search for a host plant (4). The species richness of 

plants, the group they feed on, increases towards the tropics (5) (Paper III). 

Paper IV indicates that in Chitwan there is almost no association between particular 

epiphytic orchid species and trees. In the temperate Mahabharat range (MR), there are 9 

orchid species that were not found in the Chitwan National Park (CNP) and Barandabhar 

corridor forest (CF). These orchids (Bulbophyllum secundum, Coelogyne nitida, 

Cymbidium iridioides, Dendrobium amoenum, Eria amica, Otochilus porrecta, Sunipia 

bicolor, Trudelia cristata and one unknown orchid species) prefer cool or moderate 

temperatures, originate in the Himalayan region of India and Southeast Asia and can be 

found at altitudes of 600 – 2700 meters. In contrast, the CNP and the BCF host 7 orchid 

species that were not found in the MR: Dendrobium anceps, Dendrobium primulinum, 

Gastrochilis bigibbus, Oberonia ensiformes, Oberonia falconeri and Oberonia myriantha, 

which prefer warm or moderate conditions, originate from the Himalayan region of India, 

southeast Asia to Australia and can be found at altitudes of 100 – 1400 meters. In the BCF 

the orchids were associated with particular species of trees. In contrast, in the CNP the 

orchids are more generalist and were found on 8 different species of trees. The most 

common trees in the Barandabhar Corridor Forest were Shorea robusta (48 orchid species 

in Shorea forest and 42 in mixed hardwood forest), Lagestroemia parviflora (36), 

Cleistocalyx operculata (34 in Shorea forest and 35 in Riverine forest), Bombyx ceiba (28) 

and Gaultheria fragrantissima (28). In the Chitwan National Park, the most common trees 

were again Shorea robusta (45 in Shorea forest and 43 in Mixed hardwood forest), Bombyx 

ceiba (42), Trewia nudiflora (41), Lagestroemia parviflora (37) and Cleistocalyx 

operculata (36). In the Mahabharat range the number of orchids recorded on Castanopsis 

tribuloides was 42, on Shorea robusta 26 in Hill Shorea forest and 41 in mixed hardwood 

forest, on Rhododendron arboretum 35 and on Schima wallichii 34 in Mixed hardwood 

forest and 33 in Rhododendron forest. The most abundant orchid species in BCF were 
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Acampe papillosa and Luisia micrantha that was mostly found on Shorea robusta and 

Acampe rigida on Gaultheria fragrantissina. In CNP the most abundant orchids were 

species Luisia micrantha, Acampe rigida and Aerides multiflora that were mostly found on 

Shorea robusta. In MR the most abundant orchid species were Eria amica and Coelogyne 

flaccida on Schima wallichii and Coelogyne cristata on Castanopsis tribuloides. 

To determine whether it is possible to predict population persistence over a period of 

13 years, a total of 381 individuals of Lepanthes rubripetala in six populations were 

marked and observed every month from June 1994 to January 1996 at Rio Grande within 

the Yunque National Forest, Puerto Rico. These populations were monitored again in June 

2007. Of the six populations of L. rubripetala surveyed one went extinct (population 4) 

during the period between 1994 and 2007, while almost all the other populations had 

changed size, either increasing (population 2, 5) or decreasing (population 1, 2, 6). Similar 

patterns were observed also in other epiphytes - growth (Zotz 2005; Zotz et al. 2005) or 

shrinking of populations (Mondragón et al. 2004; Tremblay 1997b; Zotz 2005). The 

predicted stable stage distribution based on the data from 1994 was similar for all 

populations, which should consist mainly of reproductive adults. Except for population 2 in 

1994 and population 3 in 2007, the stage distribution of all populations in both these years 

differed from the stable stage distribution. As in case of L. caritensis (Tremblay 1997b) the 

stable stage of the populations was skewed towards adults. However, in Winkler 2007, the 

small stages (seedling and juvenile stages) dominated the stable stage distribution in C. 

sessiliflora, T. deppeana, T. multicaulis, T. juncea and T. punctulata. Observed stage 

distribution differed significantly from the stable one in all species except of C. 

sessiliflora. The same was observed for the epiphytes L. speciosa (Hernández-Apolinar 

1992) and T. brachycaulos (Mondragón et al. 2004) where young offshoots predominated, 

and in W. sanguinolenta (Zotz et al. 2005). The deviations from the stable age structure in 

most of our populations might be because orchids produce many (>1000) seeds per fruit. 

This may result in strongly stochastic recruitment events, which transcend in the structure 

of the population. The confidence intervals (CI) of the population growth rate estimated 

from transition matrices using the 1994 data all overlap 1, which suggests that none of the 

predicted population growth rates, λpred, is significantly different from one. The observed 

population growth rate (the change in population size between 1994 and 2007 were all 

within the 95% CI and close to the estimated mean except for population 4, which went 

extinct. The ability to predict the final population size depends on the transition matrices 
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and the variance of the transition elements adequately representing the general growth 

pattern of the population. In addition, the population growth rate depends on the carrying 

capacity of the habitat. In four populations, the predicted outcome was close to that 

observed (population 1, 3, 4, 5). All simulations for populations 2 and 6 predicted very 

small population size after 13 years with a very high probability of extinction but the final 

population sizes were larger then predicted. Population 4, which had a low probability of 

persistence, went extinct. The extinction of population 4 may occur commonly in these 

orchids as a result of environmental conditions and small population size. In population 4, 

a flood resulted in the loss of all the adults, but most of the juveniles and seedlings 

survived to the end of the 1994 survey. However, it is likely that high mortality of 

juveniles and seedlings resulted in extinction of the population. Another population of L. 

rubripetala growing along the Rio Grande de Patillas in the Carite State Forest became 

extinct as a result of a flash flood in the first month of the 1994 survey. In most 

simulations, independent of the maximum carrying capacity used, the lower 95% CI 

included extinction. A priori determination of the most likely carrying capacity for each 

population resulted in the value most similar to the simulation results (Paper V). 
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GENERAL CONCLUSIONS 

 

Paper I indicates that orchid species richness does not increase with increasing NDVI, but 

significantly decreases with increasing latitude and that there is no difference between 

northern and southern hemisphere in this respect. Paper II shows that, at the large scale 

considered, area is always very important, latitude is more important than energy available 

and the size of protected areas gives a better fit than the total area in most cases. This 

implies that to preserve biodiversity conservation efforts should be directed at maximizing 

the size of the protected areas in each country.  

Certain taxonomic groups do not follow the usual trend of increasing species richness 

from the poles to the tropics. One explanation for this is that it is a consequence of the 

constraints imposed by the way of life of the group. A more comprehensive explanation 

was necessary in the case of Ichneumonids, where the “resource fragmentation 

hypothesis” is used, and in the case of aphids the diversity can be explained by the 

“common host hypothesis”. The empirical data for several groups indicate that the CHH 

can explain several inverse latitudinal gradients (e.g., psyllids and coccids). Nevertheless, 

the variability of nature makes it likely that this is not the only explanation (Paper III).  

In Chitwan the epiphytic orchids are not associated with particular species of trees 

(Paper IV).  

The main result of this study, using demographic data on Lepanthes rubripetala 

(Paper V), is that it is possible to make a long-term prediction of the growth rate of an 

orchid population, as the population growth rates as far as 13 years ahead, which is about 

eight times the life span of the species, were successfully predicted. This encouraging 

result lends support for using of matrix models for population viability analysis of natural 

orchid populations. However, a large number of variables may affect the accuracy of the 

transition probabilities, including small sample size, stochastic events, variation in vital 

rates as a consequence of density dependent processes and variation among years/surveys.  
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CONSERVATION IMPLICATIONS 

 

One important finding of papers I and II is that the size of protected areas is a better 

predictor of orchid diversity than the total area of a country. Thus it is important to 

maximize the size of the protected areas in each country in order to preserve most of its 

biodiversity. The close correlation between the size of protected areas and orchid species 

diversity shows that many endangered orchid species might be saved from extinction just 

by increasing the size of protected areas of suitable habitats and their strict protection. 

Habitat protection is particularly necessary for plant groups with special habitat 

requirements, like orchids. Logically, the reverse is also true as any reduction in the size of 

undisturbed natural areas will result in the extinction of many species, as shown here for 

orchids.  

If average temperature is plotted on the x-axis instead of latitude, these regressions 

may serve as a rough prediction of what might happen during global warming. Our results 

suggest that the orchid diversity in temperate regions might increase, but other factors 

might obscure this prediction. For example, while this prediction might be correct for 

South America, it is unlikely to hold in highly industrialized and fragmented landscapes in 

the northern hemisphere (Europe, North America). 

Another aspect of conservation that emerges from our research is the significance of 

the outliers in our regressions (see Fig. 1). Once those outliers that can be attributed to 

geographic conditions and inverse targeting of specific countries for research have been 

identified, then there is a need to consider whether the other outliers are for countries that 

are understudied. This may well be the case for Somalia and Cambodia in Africa and 

Portugal in Europe. Thus our global analysis of orchid species diversity in various 

countries can pinpoint understudied countries. Interestingly, Ecuador and Costa Rica 

(positive outliers) have many more orchid species per unit area than the less studied 

Bolivia (on the trend line), even though all three countries are in the tropics and have an 

enormous altitudinal variation. That the little research done there is the reason for the 

relative apparent lack of orchid species in Bolivia was confirmed by Vásquez et al. (2003). 

Analyses, similar to those presented here, of other plant and animal groups can 

indicate more effective uses of resources for conservation, especially when money is 

limiting.  
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The results of the predictive modelling (Paper V) can be used for exploring the 

effects of new management regimes, especially when considering small populations of 

endangered species, for which a change of management could result in extinction. The 

predictions of matrix models are based on population numbers and therefore do not take 

into account external perturbations, which may negatively affect the prediction. This might 

have been the case for our populations, which are often subject to disturbances like 

hurricanes, flush floods etc., which sweep away the whole or part of the population. Thus 

such unpredictable effects have to be taken into account in the viability analyses. 
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Abstract 

Area, energy available and latitude are the main factors influencing species richness: 

(1) species richness increases with area – the species-area relationship (SAR); (2) 

according to the species-energy relationship (SER) the energy available to an 

assemblage (i.e. that to which it can turn into biomass) at a particular spatial 

resolution influences the species richness; (3) there are more species per unit area in 

the tropics than in the temperate regions. To test the relative importance of area, 

energy available and latitude on species richness, we have collected data on species 

richness of orchids for various areas in the world and calculated the mean Normalizes 

Difference Vegetation Index (NDVI) as a measure of energy availability in these 

areas. We show that area considered is always very important, and that latitude is 

more important than energy available. 
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Abstract 

Efficient allocation of conservation resources will be achieved only if the priorities for 

biodiversity conservation – the “hotspots” – are correctly defined. To achieve this we 

need to pinpoint the main determinants of species diversity. Area, energy available 

and latitude are thought to be the most important determinants of species richness. 

Area is clearly the most important, but the relative importance of the other two is 

uncertain. To test the relative importance of energy available and latitude, data on the 

species richness of orchids was collected for various countries in the world, the 

influence of area factored out and the residuals correlated with energy available at 

these countries and with latitude. This was performed for both total area and that of 

the protected areas at the 67 countries from 5 continents, in order to determine, which 

gives a better prediction. We show that – at the large scale considered – area is always 

very important, latitude is more important than energy available and the size of the 

protected areas gives a better fit than the total area in most cases. This implies that 

conservation efforts should be directed to maximizing the size of the protected areas 

in each country. 

 

Key words: NDVI, Orchidaceae, protected area, species area, species richness. 
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Abstract 

No single pattern of biodiversity has attracted ecologists more than the observed 

increase in species richness from the poles to the tropics. An obstacle in the search for 

the primary cause of this latitudinal gradient is the ever-increasing number of 

hypotheses, their interdependence and lack of rigorous falsification. However, the 

general decline in species richness with latitude was commonly observed. 

Some groups of organisms, however, show an opposite trend: a strong latitudinal 

decline in species diversity towards the tropics. These trends have been almost 

neglected in the literature and little is known about their underlying ecological and 

evolutionary causes. Therefore, the ecological explanations proffered are usually 

specific to the group in question. Here an account of the most important cases of 

inverse latitudinal gradients is given. The existing hypotheses explaining this 

phenomenon are summarized and the evidence that tends to favor one of these is 

presented. 

 

 



Shortened version for web presentation 

 

 

 

Paper IV 

 

Orchid diversity in the Chitwan district 

 

SCHÖDELBAUEROVÁ, I., BHATTARAI, B. AND KINDLMANN, P.  

In: Basnet K. and Kindlmann P. (eds.). Himalayan Biodiversity.  

Springer, Dordrecht, accepted 

 



Shortened version for web presentation 

SCHÖDELBAUEROVÁ, I., BHATTARAI, B. AND KINDLMANN, P. Orchid diversity in the 

Chitwan district. In: Basnet K. and Kindlmann P. (eds.). Himalayan Biodiversity. 

Springer, Dordrecht, accepted 

 

Abstract 

Although the orchids in the Himalayan region are generally well known there is little 

or no information on the orchids in the lowlands of Nepal. The aim of this paper is to 

shed light on the general status and distribution of orchids in one important lowland 

region, the Chitwan district. The study area included the Chitwan National Park 

(CNP), Barandabhar corridor forest (BCF) and the Mahabharat range (MR). The 

orchids in the trees, on rocks and on the ground were recorded along a total of 200 

line transects: 40 in the BCF, 105 in the CNP and 55 in the MR. From the beginning 

of each transect, the first 50 trees within ten meters of the transect line were sampled. 

In addition, all terrestrial orchids and species of trees within ten meters of the transect 

line were also recorded. There was no association between the orchid and specific 

species of trees. There were 9 orchid species in the MR that did not occur in the CNP 

and BCF, and 7 in the CNP and BCF that did not occur in the MR. In the BCF, the 

orchids occurred on average on 4 different trees. In contrast, in the CNP the orchids 

occurred on average on 8 different trees. 
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Abstract 

The challenge of conservation biology is to make models that predict population 

dynamics and have a high probability of accurately tracking population change 

(increase, decrease, constancy). In this study we modeled 6 small populations of an 

epiphytic orchid using a Lefkovitch type analysis to predict population growth pattern 

based on monthly surveys for approximately 1.5 years. In addition, sensitivity and 

elasticity analyses were used to identify life stages with high sensitivity or elasticity 

that have the largest influence on population growth rate. We re-censused the 

populations 13 years after the first study and compared the structure of the 

populations to predictions based on the earlier census data. One objective was to 

determine if populations had achieved a stable size distribution over the 13 years 

period. Population growth rate models suggested that all populations should have 

persisted. Effective population growth rates were similar to those expected except for 

one where the population went extinct. The prediction slightly (but not significantly) 

overestimated the actual population growth rates of some populations. Elasticity 

analysis revealed that the adult stage is critical in the life cycle. The observed stage 

distributions of the populations were not stable at the beginning of the survey and 

neither were they after 13 years. We suggest that this might be caused by external 

perturbations that result in unequal mortality between life stages and stochastic 

recruitment events. The ability of the matrices to predict population size 

approximately eight generations in the future is encouraging and warrants the 

continued use of these approaches for PVA. 
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