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SUMMARY 

 The present study considers the versatile role of adipokinetic hormones (AKHs). Using the 

firebug Pyrrhocoris apterus as a model insect, the hypothesis that AKHs mediate stress response 

mechanisms was explored. The outcome indicated that there is a positive feedback regulation 

between an oxidative stressor action and the level of AKH in insect body, and that AKHs might be 

involved in the activation of antioxidant protection mechanism. Further results revealed a functional 

homology between AKH and the mammalian hormone glucagon. The possible effects of glucagon 

on mobilisation of energy reserves and on elicitation of an antioxidant response to oxidative stress 

were investigated. As a result, glucagon-immunoreactive material was detected for the first time in 

the firebug central nervous system and gut. Antioxidant mechanisms are elicited after glucagon 

treatment but it did not involve mobilization of energy reserves or AKH level changes. As a 

complement, the existence of a feedback between juvenile hormone and AKH was investigated by 

topical application of the juvenile hormone analogue methoprene, which influenced the release of 

AKH from the central nervous system into the haemolymph and induced a partial reduction of lipid 

content in haemolymph. 

 

 

 

 

1. INTRODUCTION TO THE STUDY OF STRESS 

 

 The response to the effect of stressors is a very complex and dynamic process, required for 

adaptation and evolution of practically all living beings. Furthermore, the stress response can be 

identified and studied at different levels of biological organization, that is, molecules, organelles, 

cells, organs, organisms and even populations. This broad range imposes the difficulty of discovery 

a general mechanism of stress1. At this point, the study of stress in insects might bring a broader 

understanding. At the population level, these studies may contribute to solve not only fundamental 

problems in ecology and evolutionary biology but also they are of applicable significance for insect 

pest control2. Nevertheless, it becomes essential to integrate the underlying processes at the 

organism and cellular level. Under the effect of various stressors the insects employ several 

strategies but the most common are: synthesis of protective substances and functional enzymes, 

compensatory reactions at the level of metabolism, modulation of membranes1. In most of the cases, 

mechanisms to combat oxidative stress and provide antioxidant defence mechanisms. The scope of 

this work is directed mainly at such level. 
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1.1 Stress 

Recently, stress was defined as a state of threatened homeostasis.  The adaptive response to 

stress reflects the activation of specific central circuits and is genetically and constitutionally 

programmed and constantly modulated by environmental factors. 3 

The classic description of neuroendocrine activation during stress, for mammals, includes: 

increased secretion of epinephrine, norepinephrine, cortisol, growth hormone, glucagon and 

decreased secretion of insulin. The hypothalamus is critical for the integration and coordination of 

those autonomic efferent responses4..  

Although the hypothalamo–pituitary–adrenal axis (HPA) is the most explored 

neuroendocrine regulatory pathway in the stress response, other neuroendocrine organs also 

constitute important regulatory circuits that are involved in the organization of responses to stressful 

stimuli3. For instance the hypothalamic-gonadal axis  and immune system5. Research regarding the 

biochemical mechanisms involved in stress response has extended not only to different groups of 

vertebrates, invertebrates and even plants and single-celled organisms. 

 

1.2 Oxidative Stress 

 Reactive oxygen species (ROS) originated as a byproduct of aerobic metabolism6. ROS are 

highly reactive due to the presence of unpaired valence shell electrons. Therefore, detoxification of 

ROS is one of the prerequisites for all aerobic life forms, and multiple levels of enzymatic and 

nonenzymatic defenses have evolved to form what has been termed the oxidant defence network. 7 

The imbalance between production of reactive oxygen species (ROS) and the biological 

system’s ability to readily detoxify the reactive intermediates and/or easily repair the resulting 

damage is known as oxidative stress. Most ROS are oxygen-centred or related radicals, such as: 

superoxide O2
- and hydroxyl radicals (•OH). Interestingly, some ROS such as hydrogen peroxide 

(H2O2) are not free radicals, since H2O2 does not have unpaired electrons in the outer molecular 

orbit, a typical characteristic of free radicals. 8 

The toxicity of O2
- can generate potent oxidant •OH in the presence of H2O2 and iron. The 

generation of •OH causes extensive protein and lipid oxidations. Furthermore, O2
- can attack iron 

sulfur clusters, resulting in the release of ferrous iron, which can bind DNA. Thus, catalyzed by the 

iron bound in DNA molecule, the •OH would cause further damage and possible mutagenesis of 

DNA. 9 

 Under normal circumstances, the rate of generation of superoxide from mitochondria is 

rather low and does little damage, simply because it is efficiently removed by the superoxide 

dismutases (SOD). 

 The •OH is highly reactive. It causes peroxidative damage to proteins, lipids and DNA. 
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 The physiological fate of the H2O2 generated on either side of the mitochondrial membrane 

is to be processed by glutathione peroxidase (GPX) to water in a reaction that converts reduced 

glutathione (GSH) to oxidized glutathione (GSSG). Another enzyme, the catalase (CAT), reduces 

hydrogen peroxide to water and oxygen10. CAT is a low-affinity but high capacity enzyme, perfectly 

suited for scavenging high amounts of H2O2 that occur in the mitochondria and peroxisomes. Both 

SOD and CAT are principally intracellular enzymes but their activities, which reflect the gross rate 

of ROS turnover, were also recorded in insect gut. 11 

In general, cells have numerous defence systems for maintaining the cellular redox state and 

repairing oxidatively damaged proteins, DNA and lipids. These systems include the glutathione- 

and thioredoxin-dependent reduction systems and methionine sulphoxide reductases, all of which 

ultimately require reductive equivalents from NADPH (ß-nicotinamide adenine dinucleotide 

phosphate, reduced form) for their function12. Each of these systems protects against superoxide- 

and/or peroxide-mediated oxidative stress, as demonstrated in gene-deletion studies in organisms 

such as yeast12-14. The glutathione-S-transferases, cytochrome P450s and carboxyl/ cholinesterases 

have been directly implicated in the detoxification of xenobiotics. In insects these three 

superfamilies are heavily involved in insecticide metabolism and they contribute to the great 

majority of mutations conferring metabolic resistance to chemical insecticides15-17. Insects also 

possess ascorbate peroxidase and the glutathione S-transferase with peroxidase-like activity. 18-20 

A portion of ROS is scavenged by dietary antioxidants such as ascorbate (vitamin C), α –

lipoic acidand, carotenoids (lycopene, lutein, astaxantin, violaxanthin, zeaxanthine, α-, β-, γ-

carotene, and β- carotene-5,6-epoxide.) and vitamin E (α –tocopherol, α –T). But most of the ROS 

are eliminated by the suite of antioxidant enzymes already mentioned. 8 

 

1.3 How to elicit oxidative stress experimentally? 

This brief description will be based in a substance that is commonly used to experimentally 

induce oxidative stress conditions in insect models including Pyrrhocoris apterus. 

Paraquat (1,1' -dimethyl-4,4'-bipyridinium) and its dichloride salt (1,1', dimethy l-4, 4'-

bipyridinium dichloride) are a broad-spectrum contact weed killer and herbage desiccant that is 

used widely in agriculture and horticulture. It was formulated in 1882, but its herbicidal properties 

were not discovered until 1955. Since its introduction in the early 1960's, Paraquat (PQ) has been 

used extensively in about 130 countries, on a wide variety of agricultural crops. 21 & 22 

 Several studies have shown that terrestrial invertebrates display varying degrees of 

sensitivity to PQ. In honeybees, PQ produced toxic signs23. Adsorbed PQ may be ingested by soil 

invertebrates,. Two species of springtails (Collembola; Folsomia candida, Tullbergia granulata) 

survived without measurable adverse effects. However, higher dietary levels were associated with 
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decreased survival, lengthier instar development, decreased egg production, and decreased egg 

viability24. Adults and larvae of the German cockroach (Blattella germanica) died after consuming 

diets containing PQ 1,000 mg/kg. Also, PQ was lethal to two species of mites (Tetranychus urticae, 

Typhlodromus sp.) at concentrations below recommended field application rates23. The toxic effects 

of PQ have also been studied in vertebrate animal models, especially those related to 

neurodegenerative damage. 25 

 Most authorities agree that free radical pathology is the most likely mechanism by which PQ 

is cytotoxic26-32. The biochemical mechanism of its toxicity is due to the cyclic oxidation and 

reduction in tissues, leading to production of O2
- , singlet oxygen, hydroxyl radicals and eventually, 

the highly destructive H2O2. They all are capable of initiating the peroxidation of membrane lipids, 

causing tissue damage and death. 25 

 

 

2. ADIPOKINETIC HORMONES AND THEIR FUNCTIONS 

2.1 Adipokinetic hormones 

 Stress conditions are metabolic demanding, the requirements of animals in these situations 

are essentially similar: they must mobilise their energy stores to eliminate or at least to minimize the 

stress impact on their physiological functions. Insect metabolism and especially its energetic part is 

controlled predominantly by adipokinetic hormones (AKHs), which are synthesised, stored and 

released by neurosecretory cells from the corpora cardiaca (CC), a neuroendocrine gland connected 

with the brain. 

 With some simplification, an analogy can be drawn between the brain (neurosecretory cells) 

and CC secretory system in insects, and the hypothalamus and the pituitary (adenohypophysis and 

neurohypophysis) gland system in vertebrates. In both cases, brain neurosecretory cells synthesize 

neurohormones that are released from remote neurohaemal areas: the CC (neurohaemal lobe) in 

insects, and the pituitary gland (neurohypophysis) in vertebrates. Furthermore, both the CC and the 

pituitary (adenohypophysis) synthesize and secrete their own intrinsic hormones. 33 

 Although the CC are the major source of AKHs, the brain of some insects also contains 

AKH-like material34-36. AKHs comprise eight to ten amino acids except for an unusual AKH of the 

butterfly Vanessa cardui37 comprising an 11-mer. The hormones have been isolated from 

representatives of many insect orders38 & 39. To date, more than 40 insect AKHs have been 

characterized. Together with one crustacean representative recently found also in bugs 

(Heteroptera)40, a chromatophorotropin – red pigment concentrating hormone (RPCH)41, they form 

an AKH/RPCH peptide family. 
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2.2 Functions of adipokinetic hormones in energy mobilisation 

 A major function of AKHs is the control of energy metabolism. As typical stress hormones 

the AKHs stimulate catabolic reactions (e.g. mobilise lipids, carbohydrates and/or certain amino 

acids) making energy more available; at the same time they inhibit synthetic reactions. The 

mobilisation of energy reserves enables the organism to combat the immediate stress problems and 

to suppress processes that are momentarily less important and could, if the stress effect persists, 

even draw on the mobilised energy. Insect fat body is the main target tissue for AKHs action; there 

the signal transduction at the cellular level is well documented. 42 & 43 

 Recently AKH receptors have been cloned from the fruit fly Drosophila melanogaster and 

the silkworm Bombyx mori44 & 45. The receptors are G protein-coupled and are, structurally and 

evolutionarily, related to the gonadotropin releasing hormone receptors from vertebrates. Generally, 

in hypertrehalosemia, AKHs bind their receptors and activate phospholipase C (PLC) increasing 

inositol 1,4,5-trisphosphate (IP3) levels. This induces the release of Ca2+ from intracellular stores 

which leads to the initiation of the capacitative Ca2+ entry into the cytosol. The increased Ca2+ 

concentration results into phosphorylation and activation of glycogen phosphorylase by 

phosphorylase kinase43. In Periplaneta americana, production of diacylglycerol (DAG) along with 

IP3 has been proposed. DAG in conjunction with Ca2+ then activates protein kinase C (PKC), 

which, in turn, activates glycogen phosphorylase by phosphorylation46 & 47. During hyperlipemia, 

binding of AKH may lead to a conformational change in a Gs protein which, in turn, activates an 

adenylate cyclase, resulting in an increase of intracellular cyclic AMP levels. Cyclic AMP 

stimulates lipase activity, most likely via activation of a protein kinase A. The influx of extracellular 

Ca2+ is also essential for the adipokinetic effect. In moths, release of Ca2+ from IP3-insensitive 

intracellular stores causes an increase in the hemolymph lipid titers48. The mode of action of AKHs 

during hyperprolinemia appears to be similar to that during hyperlipemia. It seems that AKHs bind 

to the receptor to cause a conformational change of a Gs-protein which, subsequently, activates an 

adenylate cyclase. The increase in cyclic AMP levels might activate triacylglycerol lipase and 

consequently triacylglycerol (TAG) breakdown to release fatty acids. AKHs seem to activate Ca2+ 

release from intracellular stores and also the capacitative Ca2+ entry into the cytosol. 43 

 AKH functions in energy metabolism are accompanied with a number of supporting actions 

that increase the affectivity of mobilised energy. For example inhibition of anabolic processes such 

as RNA49, protein50 and lipid syntheses51 ensure that mobilised energy is directed to cover the 

energy demands. The inhibition of total RNA synthesis by AKHs was shown in L. migratoria fat 

body incubated in vitro. The inhibition is dose-dependent, with potency decreasing in the order 

Locmi-AKH-III > AKHII > AKH-I. Studies in which the significance of the inhibition of protein 

synthesis by AKHs were investigated, are concerned with vitellogenin and arylphorin syntheses in 
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the fat body52. The inhibition of lipid synthesis by extracts of CC was demonstrated by Gokuldas et 

al.51. The inhibitory effect of AKH on fatty acid synthesis was confirmed in a series of experiments 

with dispersed fat body cells from L. migratoria prepared by chymotrypsin treatment. 53 & 54 

 On the other hand AKH function in mobilisation of nutrients is supported by AKH elicited 

stimulation of heart beat55 which helps to their quicker transport. 

 Special attention is paid to stimulation of locomotion. Hormonal control of insect visceral 

and skeletal muscle activity is a well-documented phenomenon. Stimulatory effects of AKHs on 

insect (skeletal) muscle activity are demonstrated in P. apterus56 & 57, Gryllus bimaculatus58 P. 

americana59 and D. melanogaster60 & 61, in all injections of the hormone increase locomotor activity 

significantly. The AKH modulation might be dual;metabolic and neuromodulatory. 56 

 

2.3 Other functions not associated with energy metabolism 

 Recently, it was found that AKHs participate in stress reactions that do not include rapid 

production and subsequent consumption of energy62. Stress-induced elevation of the AKH titre 

occurs in Schistocerca gregaria and P. apterus challenged with an insecticide63 & 64, excessive 

KCl65, photophase interruption66, or exposure to constant darkness67. 

 AKHs play a complex role in the formation of insect eggs which was proven by Lorenz in 

the cricket G. bimaculatus. Crickets injected with Grybi-AKH show a significantly reduced lipid 

and protein content in the fat body; and a significant reduction of the ovary mass due to the retarded 

maturation of the oocytes as well as a lower number of terminal oocytes68. The complex role of 

AKHs in two of the most energy-demanding events in the adult insect life (i.e. egg production and 

insect locomotion) prove their crucial position in insect metabolism and in adjusting to stress 

situations.  

 An interesting role of AKHs as multifunctional anti-stress coordinators was proven by their 

participation in insect humoral and cellular immune system. The prophenoloxidase cascade in the 

haemolymph of L. migratoria is activated when laminarin is injected, and this activation is 

prolonged when Locmi-AKH-I is co-injected with immunogen67. The injection of bacterial 

lipopolysaccharide (LPS) from Escherichia coli stimulates the formation of nodules but does not 

increase the phenoloxidase activity in the haemolymph; on the other hand, co-injection of Locmi-

AKHI and LPS results in a greater number of nodules being formed, and activates also the 

prophenoloxidase cascade68 & 69. It is suggested that these two immunogens must activate the 

prophenoloxidase cascade by quite distinct pathways, that are probably not based on rapid changes 

in the energy rich metabolites; although, changes in the lipophorins and the apolipoprotein-III 

coincident with immune challenge point to a participation of lipids in this process. 70 

 Application of PQ into the insect body increases the titre of AKH in both the CC 



 7 

(Leptinotarsa decemlineata) and haemolymph ( L. decemlineata and P. apterus)71& 72(see page 8). 

Multiple increases in the titre of AKH occur in L. decemlineata fed on genetically modified 

potatoes that express Bacillus thuringiensis toxin or Gallanthus nivalis lectin71. Interestingly, these 

stressors also cause oxidative stress similar to that induced by PQ73. As both PQ and the toxins from 

the genetically modified potatoes have similar effects on the AKH levels, it is likely that the 

mechanism is similar. Moreover, an injection of exogenous AKH mobilises anti-oxidative 

mechanisms that reduce failures incurred by oxidative stressors: protein carbonylation, decrease of 

glutathione levels and attenuation of total antioxidant activity in haemolymph. These observations 

indicate that a feedback regulation might operate between the stressor and AKHs, and the last could 

elicit antioxidant protection mechanisms. The possible mode of action is not known in detail, but 

oxidative stress could be a causative factor accelerating synthesis or release of AKH in/from the 

CC. 72 



 8 

 
 
 
 
 
 
 



 9 

3. THE ROLE OF GLUCAGON 

3.1 Glucagon peptides 

 The well known vertebrate hormone glucagon and glucagon-like peptides are produced in 

the gut, pancreas, and brain, and exert multiple biological actions converging on energy 

homeostasis via activation of distinct G protein-coupled receptors. Glucagon, liberated from islet α-

cells of the pancreas, promotes glucose homeostasis via control of glucose production and 

glycogenolysis. Glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2) are secreted 

from gut endocrine cells. They regulate energy disposal and the functional integrity of the 

gastrointestinal epithelium. In humans, the actions of these peptides and related analogues are 

relevant to the treatment of disordered energy homeostasis as exemplified by diabetes, obesity, and 

intestinal insufficiency. 74 

 The proglucagon gene is expressed as a single messenger RNA transcript in α –cells of the 

endocrine pancreas, the enteroendocrine L-cells of the small and large intestine, and in brain stem 

neurons within the central nervous system (CNS) 75. Although very little is known about the factors 

responsible for regulating proglucagon gene expression in CNS76.  

 Proglucagon mRNA transcripts are translated into a single 160 amino acid precursor in the 

pancreas, intestine, and brain. Subsequently it undergoes tissue specific posttranslational processing 

mediated by a prohormone convertase to generate structurally related, yet distinct, proglucagon-

derived peptides (PGDPs)75; these PGDPs in turn activate specific seven transmembrane G protein-

coupled receptors and play important roles in modifying nutrient intake, absorption and 

assimilation. 77 

3.1.2 Glucagon 

 In pancreatic α -cells, the action of the prohormone convertase-2 liberates glucagon, a 

hormone that is important for regulating carbohydrate metabolism. Glucagon is a 29 amino acid 

peptide whose effects converge on hepatic glucose output and oppose those of insulin. As a result, 

glucagon elevates blood glucose levels primarily by stimulating glucose output via enhancement of 

glycogenolysis and promotion of gluconeogenesis in the liver. The injection of glucagon into the 

CNS has a potent inhibitory effect of food intake and may also play a role in regulating meal size. 

Lower levels of glucagon receptor mRNA are present in the stomach and intestine. 75 

 Glucagon receptors (GluR) are widely expressed in multiple mammalian tissues including 

liver, heart, kidney, spleen, ovary, pancreatic islets, thymus, stomach, adrenals, intestine, thyroid, 

skeletal muscle, adipose tissue, lung and brain. Therefore, their effects also include stimulation of 

lipolysis in adipose tissue, elevation of heart rate and blood pressure, and regulation of renal 

functions77. The binding of glucagon to its receptor leads to the activation of adenylyl cyclase, 

elevation of intracellular cyclic AMP, and activation of protein kinase A (PKA). Glucagon can also 
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activate phospholipase C and increase intracellular levels of IP3 and Ca2+. Structure–function 

studies of the glucagon receptor indicate that sequences in the N-terminal extra cellular domain, in 

particular aspartic acid residue 64, as well as the first extra cellular loop and the third and fourth 

transmembrane domains are essential for ligand binding. op. cit. 

3.1.3. Proglucagon-derived peptides in the intestine and brain 

 In the L-cells of the intestine, proglucagon is processed by the prohormone convertase 1/3 to 

glicentin, oxyntomodulin, GLP-1, GLP-2, and a peptide of unknown function designated 

intervening peptide77. Although receptors for the PGDPs have been best characterized in 

mammalian species78 they have also been cloned from different vertebrate representatives. 78 - 80 

 

3.2 Glucagon related peptides in insects 

 Early studies in insects focused on the existence of metabolic hormones resembling those 

known in vertebrates. Several insect neurosecretory cells showed immunoreactivity to antisera 

raised against mammalian neuropeptides. Essentially, peptides of gastro-entero-pancreatic type have 

been detected also in insect nervous tissue81 & 82. But in insects, the regulation of glycaemic 

metabolism is mainly conferred to AKH family members. Almost all members of this family 

present a hyperglycaemic activity, but no close structural homology with the glucagon family was 

detected. The existence of glucagon family molecules has been reported in insects, but their 

involvement in glycaemia regulation may not be predominant: Tager et al.83 reported the presence 

of glucagon related molecules in CC and corpora allata (CA) extracts of M. sexta. Kramer et al.84 

also detected a glucagon-like molecule in the haemolymph of larvae and pupae of M. sexta. El 

Sahly et al.85 confirmed these results and suggested the CNS as the origin of this molecule; this 

factor may then be transported to CC and CA for storage or release. Thorpe and Duve86 also 

reported immunological staining of secretory cells in the nervous system of Calliphora vomitoria. 

The data presented in this thesis, confirm the presence of immunoreactive glucagon material in the 

CNS and gut of the firebug P. apterus (see page 12). All these results attested to the existence of 

glucagon-like molecules in insects, probably produced by neurosecretory cells and stored in a 

neurohemal organ before release.  

 Maier et al. confirmed via experimental injections the involvement of glucagon-like peptide 

in the regulation of glycemia in the honeybee Apis millifica87. But our experiments showed, in 

accordance with Ziegler's findings in M. sexta88, that porcine glucagon does not elicit mobilisation 

of energy supplies such as AKHs. 

 

3.3 AKH and glucagon functional homologies 

 Different studies suggest that AKHs bear glucagon-like functions89 - 91. The main function of 
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glucagon is similar to that of AKHs: mobilization of energy reserves, mainly glucose; and 

participation in the control of glucose level in the blood. Although, the control of carbohydrate level 

in insect haemolymph is less accurate since insects can tolerate substantial fluctuations of these 

compounds92. Vertebrate glucagon activity is directed mainly to the liver, whereas AKH function is 

targeted mainly in the fat body, an insect analogue of the liver tissue. Apart from this tissue, 

glucagon and AKH are also found in peptidergic neurons. 

 Such as glucagon in pancreatic islet α- cells, AKH is synthesized as a pre-hormone and 

subsequently processed and stored in dense core vesicles91 & 92. Although structurally there are not 

close homologies, some authors have considered some sequence similarity with the N-terminus of 

glucagon and AKH peptides93. Our results in MegAligment showed only 37.5% similarity between 

P. apterus AKH and porcine glucagon. Similar to mammalian glucagon activity in liver, AKH has 

been demonstrated to bind a G-protein-coupled transmembrane receptor94. Nevertheless, it must be 

taken into account that AKH binds G-protein coupled receptors from the A family (Rhodopsin-like), 

wheras glucagon binds B family members, also called Secretin receptor family. And the fact that 

mammalian glucagon appears to activate different transduction mechanisms depending on hormone 

concentration. 95 

 One more functional homology was suggested: apparently, the relationship between D. 

melanogaster insulin-like peptides and AKH is homologous to the antagonism between insulin and 

glucagon in vertebrates.90 & 96 

 

3.4 Glucagon and oxidative stress in insects and vertebrates 

 There are indications that glucagon could play a regulatory role in activation of antioxidant 

mechanisms in vertebrates to protect the organism from oxidative stress. Lu et al.97 reported that 

glucagon-mediated signal transduction pathways lead to a down regulation of hepatic GSH 

synthesis while promoting the efflux of GSH to the blood plasma in rats. Based on these findings, it 

was suggested that the amelioration of stress markers might be under regulation of certain 

hormones, at least those which act through the cyclic AMP second messenger cascade. 97 

 Our studies showed no mobilisation of lipids and no changes on AKH levels after glucagon 

treatment in the insect model. However, glucagon stimulated antioxidant mechanisms after 

induction of oxidative stress by PQ. In both cases, the coupling of either AKH or glucagon with the 

stressor PQ prompted protective mechanisms against oxidative stress but by different pathways. 
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4. INTERACTIONS OF ADIPOKINETIC AND JUVENILE HORMONES 

4.1 AKHs and juvenile hormones 

 Similarly, as AKHs and perhaps some other groups of insect hormones, also juvenile 

hormones (JHs) are pleiotropic in their functions, controlling many aspects of insect life, but their 

principal roles are regulating metamorphosis and, in many species, vitellogenin synthesis and 

deposition in the oocytes of adult females98. On the other hand, the adipokinetic peptides are 

controlling predominantly energy metabolism, but as mentioned previously, many other processes 

including synthesis of basic nutrients (inhibition of RNA, protein (vitellogenin) and lipid syntheses) 

that interfere with actions not only of energy metabolism, but also with processes like oxidative 

stress, humoral and cellular immune response or reproduction62. Therefore, it is evident that, 

functions of juvenile and adipokinetic hormones can intersect in some processes and a possible 

feedback between them is logical. 

 In this last chapter the coupling action of JH is analysed in terms of AKH characteristics 

already described for the insect model P. apterus (see page 15). As the natural P. apterus JH has not 

been identified yet, in spite of a prolonged and intensive effort of several researchers, the juvenile 

analogue (JH-a) methoprene was used to mimic the JH action. 

 

4.2 Juvenile hormone 

 JH is a sesquiterpenoid lipid-like hormone secreted by the corpora allata (CA), endocrine 

glands of the head situated behind the brain98-103. Insects produce at least eight forms of JH-like 

compounds (0, I, II, III, JH3 bisepoxide [JHB3], 4-Methyl-JH, 80-OH-JH III, 120-OH-JH III), JH 

III being the most common type. 98 - 100, 102, 103 

While the molecular details underlying JH action remain poorly understood, JH is known to 

respond to various internal (e.g. hormonal, genetic) and external (e.g. temperature, nutrition, 

photoperiod) factors, to regulate and coordinate the expression of entire gene batteries, and to 

simultaneously affect multiple phenotypes98, 104, 105. Remarkably, JH affects a vast array of 

phenotypic traits and physiological or developmental processes including: pre-adult development, 

imaginal disc proliferation, organ looping, metamorphosis, ovarian development, sexual maturation, 

pheromone production, locomotor and courtship behaviour, diapause regulation, migration, various 

morphological polyphenisms, division of labour in social insects, neuronal architecture, memory, 

learning, immune function, stress resistance and ageing. 98 – 100, 104-113 

JH is present throughout late embryonic and larval development and serves a ‘status quo’ 

function coordinating with other basic methamorphosis hormones, ecdysteroides. JH thus 

determines whether the insect molts to a larva, pupa or adult. Metamorphosis occurs only when 20-

hydroxy-ecdysone acts in the absence of JH98 & 112. In many insects, experimentally induced excess 
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of JH during larval development delays metamorphosis, whereas withdrawal leads to precocious 

metamorphosis98.  

The main function of JH in adults concerns the control of reproductive processes. It affects 

the synthesis and secretion of vitellogenins in fat body, yolk proteins in ovarian follicle cells and 

their uptake by developing oocytes112, 114 - 116. The treatment with either ecdysteroids or the JHa 

methoprene, upregulates transcription of proteins in the fat body112 & 116. In response to stressful 

environmental conditions, adult insects can enter a state of reproductive diapause (also called 

quiescence or dormancy), characterized by (1) reduced metabolism, (2) arrested oogenesis, mating 

and egg production, (3) increased stress resistance, and (4) enhanced survival. 117 - 121 

Interestingly, JH also suppresses stress resistance and innate immunity119, 121 - 124. 

Reproductively dormant Drosophila with down regulated JH exhibit greater resistance to heat and 

oxidative stress than nondiapausing flies119, and methoprene treatment of female D. melanogaster 

increases the number of vitellogenic oocytes, while decreasing resistance to oxidative stress and 

starvation resistance122. In the mealworm beetle (Tenebrio molitor), the level of phenoloxidase, an 

antimicrobial agent, is reduced by mating but the application of the JH inhibitor fluvastatin 

increases the immune function124. By increasing reproduction at the expense of stress resistance, 

immunity and longevity, JH may thus be an important proximate mechanism underlying 

evolutionary trade-offs between reproductive and survival functions. 125 

 

4.3. AKH interaction with methoprene 

 An idea of possible interaction(s) of AKH with JH and/or JH-a comes from the studies of 

Kodrík and Socha and their co-workers on P. apterus36, 56, 126 - 129. Recently, we have shown that 

methoprene induced significant reduction of haemolymph lipids after the treatment, however, did 

not reduced significantly the ability of the AKH to mobilise fat body lipids. The same methoprene 

treatment elicited a significant increase of AKH content in the CNS (brain, corpora cardiaca and 

corpora allata complex) of experimental bugs after the JH-a application. A significant decrease of 

the AKH level in the haemolymph was recorded at the same times and under the same experimental 

conditions. It suggests that methoprene may reduce AKH release from the CNS, while an increase 

of the AKH content in the CNS could be a result of greater hormonal accumulation rather than the 

stimulation of AKH synthesis (see page 15). 

 

4.4 Juvenile hormone analogues and their practical usage as biorationale pesticides 

The idea that insects would be unable to develop resistance against JH if it was used as a 

control agent was one of the driving principles behind the impetus to develop this hormone as an 

insecticide130. The difficulty and cost of synthesizing such a complex molecule with a labile epoxide 



 15 

moiety and susceptibility to degradation delayed the realization of this concept. However, it soon 

became apparent that several synthetic analogues of JH, many of them several fold more active than 

the native hormone, could be used as control agents. Nowadays, several hundreds or perhaps 

thousands of compounds, obtained by natural or synthetic processes, are known to act as JH-as. 

They are of practical importance, mainly to control insect pest populations, due to their negative 

effect on embryonic or larval development, or on adult reproduction altering the hormonal levels in 

the insect body. Methoprene, a well known JH-a, was used in our study (see below). 

Methoprene is perhaps one of the best known terpenoids developed for pest control. 

Extensive data collected over several years have shown that this JHa is relatively nontoxic to most 

non-target organisms. It has been used as a mosquito larvicide and for controlling many 

coleopterans, dipterans, homopterans, and siphonopterans131. Data obtained from a mutant strain of 

D. melanogaster that was tolerant to methoprene (Met flies) showed that methoprene resembles 

better JH III, JH B3, and several JHas but not many other insecticides. 132 
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CONCLUSION REMARKS 

 

 The three papers that constitute the backbone of this thesis brought about the following 

conclusions: 

1. A treatment of P. apterus adults by paraquat (PQ), a compound that creates conditions of 

oxidative stress, resulted in (A) a significant elevation of the AKH level in haemolymph without 

changing it in CNS. The PQ treatment resulted also in (B) significantly enhanced carbonyl contents 

and a depletion of glutathione pool in the haemolymph, but the co-injection of AKH and PQ 

reversed these effects by decreasing protein carbonyl formation, increasing reduced glutathione 

levels, and enhancing the total antioxidant capacity of cell free plasma. The results indicate (C) a 

positive feed back regulation between an oxidative stressor action and the level of AKH in insect 

body, and that AKHs might be involved in the activation of antioxidant protection mechanism. 

2. In search for a functional homology between AKH and glucagon (A) the presence of 

immunoreactive glucagon material was demonstrated in the firebug CNS and gut. The injection of 

mammalian glucagon showed (B) no effect on haemolymph lipid level or on the level of AKH in 

CNS and haemolymph, but (C) glucagon elicited the antioxidant response by significantly 

increasing glutathione and decreasing protein carbonyl levels in haemolymph, and decreasing both 

protein carbonyl and protein nitrotyrosine levels in CNS. Additionally, (D) when co-injected with 

PQ, glucagon partially eliminated the oxidative stress markers. This implies that (E) glucagon 

might induce an antioxidant defense in insects, as mentioned above for AKH.  

3. The treatment of P. apterus adults with the juvenile hormone analogue methoprene (A) induced 

reduction of haemolymph lipids, but did not reduce the ability of AKH to mobilise fat body lipids. 

The methoprene treatment elicited (B) a significant increase of the AKH content in CNS and a 

significant decrease of it in haemolymph. (C) Similar results were observed when the production of 

AKH, from the CNS, was evaluated under in vitro conditions. These results suggest that (D) 

methoprene may reduce AKH release from the CNS, while an increase of the AKH content in this 

tissue could be the result of a greater hormonal accumulation rather than the stimulation of AKH 

synthesis.  
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