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Annotation 

Ogre elements represent a distinct group of Ty3/gypsy LTR retrotransposons occurring in a 

range of dicot plants. They are characterized by two specific features – presence of long extra 

open reading frame in 5´ untranslated region with unknown function and a non-coding 

sequence containing several stop codons separating protease and reverse transcriptase 

domains which was proposed to be removed by splicing. This thesis describes the functional 

analysis of intron splicing in Ogre retrotransposons. Further, it investigates additional coding 

information not only in Ogre retrotransposons but in the whole group of Ty3/gypsy 

retroelements.  
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INTRODUCTION 

1. Eukaryotic transposable elements 

 A significant portion of eukaryotic genomes is composed of transposable elements 
(TEs) that in some cases account for 50 − 70% of the genome (Meyers et al. 2001; Biemont 
and Vieira 2006; Gentles et al. 2007). TEs were first discovered in maize by Barbara 
McClintock and her breeding experiments provided the first descriptions of these genetic
agents (McClintock 1951). Because TEs exploit host resources for selfish purposes they have 
been considered as genomic parasites. However, recent observations showed that mobile 
DNA plays a major role in the structural and functional evolution of genes and genomes in 
various organisms (Kazazian 2004; Feschotte 2008). 

1.1 Classification of TEs 

 Eukaryotic TEs are divided into two classes according to whether their replication is 
mediated by RNA (class I or retrotransposons) or DNA (class II or DNA transposons).  
According to the classification system for eukaryotic TEs by Wicker et al. (2007) these two  
classes are further subdivided into subclasses, orders, superfamilies, etc. based on structural 
relationships, details of the transposition mechanism, and sequence similarities.  

 Class I of TEs contains five orders that have been distinguished on the basis of their 
transposition mechanism, organization and phylogeny of reverse transcriptase (RT, the 
enzyme encoded by retroelements, see below). This group of mobile genetic elements is 
characterized by a replicative (copy-and-paste) mode of transposition that involves 
transcription of genomic copy of element, reverse transcription of the resulting RNA into 
DNA, and subsequent integration of a new element into another locus. This replicative 
process can rapidly increase the copy number of retrotransposons and thus these elements 
may be important players in the evolution of genome size (Kumar and Bennetzen 1999; Vitte 
and Panaud 2005; Sabot and Schulman 2006).  

 First order of class I, LTR retrotransposons, possess long terminal repeats (LTR) that 
flank the internal region. In all autonomous elements the inner part encodes both structural 
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proteins (Gag) and enzymes (protease, reverse transcriptase, RNaseH and integrase) that are 
essential for TEs life cycle. Second and third order, LINEs (long interspersed elements) and 
SINEs (short interspersed elements), were previously defined as non-LTR retrotransposons 
because of their lack of long terminal repeats. Autonomous LINEs encode at least reverse 
transcriptase and a nuclease. The best known family of this order, L1 retroelements, 
represents approximately 17% of the human genome (Cordaux and Batzer 2009).  The SINE 
elements originate from random retrotransposition events of various polymerase III transcripts 
(Kramerov and Vassetzky 2005). The internal polymerase III promoter allows them to be 
expressed. Nevertheless, they have no protein coding capacity and their replication and 
integration is dependent on proteins encoded by LINE elements (Ohshima et al. 1996; 
Kajikawa et al. 2002; Dewannieux et al. 2003). Members of the fourth order of 
retrotransposons, DIRS-like elements encode tyrosine recombinase instead of integrase and 
probably use different mechanism of integration than other retrotransposons (Capello et al. 
1985; Goodwin and Poulter 2004). The last order consists of Penelope-like elements that were 
first identified in Drosophila virilis. The transpositionally active Penelope retrotransposon is 
responsible for the hybrid dysgenesis syndrome in this species (Evgenev et al. 1997). These 
retrotransposons encode reverse transcriptase domain with similarity to telomerase and an 
endonuclease (Evgenev and Arkhipova 2005).  

 Class II of TEs consists of two subclasses that are distinguished by the number of 
DNA strands that are cut during transposition event (Wicker et al. 2007). Nevertheless, these 
elements never move via RNA and the genomic DNA itself is the mobile intermediate. 

 First subclass contains orders TIR and Crypton that both use the classical cut and paste 
mechanism of transposition. Presence of terminal inverted repeats (TIRs) is the characteristic 
feature of nine superfamilies (with well-described members such as P element from 
Drosophila or Ac-Ds from maize; Rio 1990; Courage et al. 1984) belonging to the TIR order. 
Transposition process is mediated by a transposase enzyme that recognizes the TIRs. The 
transposase excises the transposon and integrates it into the target site. The gaps at the 
integration site and double-stranded DNA breaks in the donor DNA are repaired by the host 
DNA repair machinery (Miskey et al. 2005). The poorly known Crypton elements comprise 
the second order of this subclass. They contain a long gene interrupted by several introns that 
encodes putative tyrosine recombinase (that was found also in DIRS-like retrotransposons) 
but lack reverse transcriptase domain which suggests that they transpose via DNA 
intermediate (Goodwin et al. 2003).  
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 Subclass 2 of DNA transposons contains two orders, Helitron and Maverick. Elements 
of both orders most likely rely on distinct transposition mechanisms involving replication 
without double-stranded cleavage. These elements probably transpose through a replicative, 
copy-and-paste process (Feschotte and Pritham 2007). Helitrons probably replicate via a 
rolling-circle (RC) mechanism that is similar to the RC replication strategy of some plasmids, 
single-stranded bacteriophages, plant geminiviruses and some prokaryotic transposable 
elements (Kapitonov and Jurka 2001; Feschotte and Wessler 2001). Helitrons have no TIRs 
and autonomous copies encode helicase and nuclease/ligase. Remarkable feature of Helitrons 
is their ability to carry gene fragments that have been captured from the host genome 
(Morgante et al. 2005; Lai et al. 2005). Transposable elements of the order Maverick (also 
known as Polintons) are very large transposons with long TIRs and coding capacity for 
multiple proteins. Their mechanism of transposition is not yet well understood, but they 
probably replicate using a self-encoded DNA polymerase (Feschotte and Pritham 2005; 
Kapitonov and Jurka 2006; Pritham et al. 2007). 

 Both retrotransposons and DNA transposons can be either autonomous or 
nonautonomous. The latter group lacks some (or all) genes encoding the essential proteins for 
their transposition, so they must "borrow" these proteins from autonomous TEs. To the 
nonautonomous groups of TEs belong large retrotransposon derivatives (LARDs), terminal 
repeat retrotransposons in miniature (TRIMs) or miniature inverted-repeat transposable 
elements (MITEs). LARDs and TRIMs are LTR retrotransposon derivatives (Kalendar et al. 
2004; Witte et al. 2001) while MITEs are deletion derivatives of DNA transposons with copy 
number reaching over thousands in genomes (Feschotte et al. 2002).  

1.2 Genomic impact of TEs 

 Mobile elements affect the genomes in many different ways and they play a key role in 
the evolution of eukaryotic genomes and gene regulation.  

 TEs make up large portions of most eukaryotic genomes with 45 % of human genomic 
content, 37 % of mouse genome (Deininger et al. 2003) and in plants, where TEs can be 
extremely successful in their amplification, they constitute up to 70 % of the genome (Meyers 
et al. 2001). To explain such phenomenon, the skeletal role of this "junk DNA" has been 
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hypothesized (Cavalier-Smith and Beaton 1999). According to this theory, optimal cellular 
function requires a relatively constant cytonuclear ratio (ration between cell volume and 
nuclear volume, i.e. genome size). Therefore, amplification of TEs that increases the genome 
size may play a role in maintaining critical nuclear volume and the amount of non-coding 
DNA derived from TEs is maintained by positive selection. 

 Mobile elements can affect the regulation of nearby gene expression at several levels 
(for review see Feschotte et al. 2008). At the transcriptional level a transposable element can 
influence the expression of close gene by inserting the regulatory sequences such as 
promoters or transcription factor binding sites. For example, it was shown that almost 25% of 
the analyzed promoter regions of human genome contain TE-derived sequences (Jordan et al. 
2003). At the post-transcriptional level, a TE can introduce an alternative polyadenylation site 
and it can cause various forms of alternative splicing by inserting within the intron sequence. 
Alternatively, transposon can be exonized which leads to either the formation of new protein 
isoform or the degradation of mRNA by nonsense-mediated decay pathway if the premature 
stop codon is introduced. Analysis of TE exonization events in human and mouse genome 
revealed that this process occurs preferentially in the beginning of protein coding sequences 
and can be population-specific. Therefore, the exonizations may enhance divergence and lead 
to speciation (Sela et al. 2010).  

 Proteins or protein domains encoded by transposable elements have been recruited by 
their hosts during evolution of diverse eukaryotic lineages. Host genomes have domesticated a 
various proteins encoded by TEs, such as gag proteins, integrases, transposases or envelope 
proteins of retroviruses (for review see Miller et al. 1999; Volff 2006). The well-studied 
domesticated transposase is Rag1 protein that plays an important role in formation of various 
antibodies produced by immune system of jawed vertebrates. Rag1 together with Rag2 
catalyze the recombination of the V(D)J locus which leads to the high diversity of 
immunoglobulins and T-cell receptors. It was shown that Rag1 core region required for its 
catalytic activity as well as the recombination signal sequences are derived from an ancient 
DNA transposons Transib (Agraval et al. 1998; Hiom et al. 1998; Roth and Craig 1998; 
Kapitonov and Jurka 2005). 

 The key enzyme of retroelements, the reverse trancriptase (RT) is thought to be 
relative to telomerase that replicates telomeres of chromosomes. Telomerase is an RNA-
dependent DNA polymerase that shares sequence similarities with reverse transcriptase of 
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mobile elements and thus seems to be created by domestication of RT of a retroelement 
(Nakamura et al. 1997). Transposable elements play a key role in maintaining telomeres of 
Drosophila melanogaster using a different strategy. Drosophila cannot regenerate the ends of 
chromosome using telomerase since this species does not encode this enzyme. Instead, two 
transposable elements, Het-A and TART, have been domesticated by the genome to perform 
this function. These elements repeatedly insert at the telomeres and thus they are able to 
extend the chromosome ends and slow terminal loss (Levis et al. 1993; Sheen and Levis 
1994). 

 Besides their positive contribution to their host genome, transposable elements can 
promote mutations and chromosome rearrangements leading to various disorders. In humans, 
de novo insertions of transposable elements L1, Alu and SVA were shown to cause various 
diseases such as haemophilia, cystic fibrosis, muscular dystrophy, �-thalassemia or breast and 
colon cancers (Callinan and Batzer 2006; Chen et al. 2005; Cordaux and Batzer 2009).  

 Due to this harmful effect of TEs, organisms employ various strategies to protect their 
genome including DNA methylation, modification of histones (especially methylation of 
lysine 9 of histone H3, H3mK9), chromatin remodelling and RNA interference (Lippman et 
al. 2003; Zilberman and Henikoff 2004). In RNA interference (RNAi) pathway, dsRNA is 
cleaved into short RNAs which are subsequently associated with RNA-induced silencing 
complex (RISC) and they guide degradation or translation silencing of complementary 
transcripts (Aravin and Tuschl 2005). dsRNA from transposable elements can be generated 
from two overlapping antiparallel transcripts that base pair together as it was shown for 
human L1 retroelement (Yang and Kazazian 2006). Short RNAs can function also in alternate 
pathway (RNAi-mediated chromatin modifications) where a different complex cleaves  
nascent transcripts that are still attached to RNA polymerase II and the DNA strand. This 
region of chromatin is subsequently modified by methylation of DNA and/or histone H3 
(H3mK9) which leads to the formation of heterochromatin that is condensed and inaccessible 
to transcription (Slotkin and Martienssen 2007).  

 The precise control of retroelement transposition was shown to play an important role 
in generating neuronal sequence diversity (for review see Singer et al. 2010). Non-LTR 
retrotransposons L1 are mobilized during the formation of central nervous system and later 
during adult neurogenesis. Transposition occurs independently in individual cells which leads 
to the neuron-to-neuron variation in genomic DNA. L1 transposition is repressed in neural 
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stem cells by a complex comprised of the transcription factor SOX2 and histone deacetylase 1 
(HDAC1). During the transition from neural stem cells to neural progenitor cells, 
derepression of the SOX2/HDAC1 complex occurs and Wnt signaling pathway induces 
expression of L1 retrotransposons (Kuwabara et al. 2009). Ectopic activation of previously 
silenced retrotransposons leads to the somatic mosaicism and thus to the phenotypic diversity 
of the neurons since new L1 insertions may influence the expression of nearby genes (Muotri 
et al. 2005). This mechanism may affect neural plasticity, cognition and ultimately behaviour 
in individuals (Singer et al. 2010). 

2. LTR retrotransposons 

 Long terminal repeat (LTR) retrotransposons are less abundant in animals, but 
represent a major fraction of repetitive sequences in plant genomes. They are closely related 
to the retroviruses since they share the mechanisms of intracellular element transcription, 
replication and integration. One distinguishing feature between these two types of 
retroelements is the presence of envelope (env) gene in the retroviruses that enables them to 
be infectious. Envelope proteins associate with cell membrane and allow the budding of viral 
particles from infected cells (for review see Coffin et al. 1997; Kuman and Bennetzen 1999).  

2.1 Structure of elements 

 LTR retrotransposons have direct LTRs that can range from a few hundreds 
nucleotides to several kb in size (Ogre retrotransposons possess LTRs over 6 kb long; Macas 
and Neumann 2007). The LTRs contain the sequences associated with the transcription such 
as promoter and polyadenylation signal. LTRs terminate in short inverted repeats, usually 5´–
TG...CA–3´ and flank the internal gag-pol region that encodes both structural and enzymatic 
proteins. The gag gene encodes structural proteins that form virus-like particles where the 
reverse transcription occurs. The pol gene encodes the enzymatic functions required for 
replication, including protease (PRO), reverse transcriptase/RNaseH (RT/RH) and integrase 
(INT). The proteins encoded by gag and pol are synthesized as a polyprotein and individual 
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functional peptides are released by the action of PRO (Kumar and Bennetzen 1999; Havecker 
et al. 2004). 

 Gag and Pol proteins are encoded either within a single open reading frame (ORF) or 
the overlapping or adjacent ORFs are present. In latter cases the translation of proteins 
downstream of the stop codon or change in frame is facilitated by ribosomal frameshifting 
that was well studied in the retroviruses but occurs also in retrotransposons (Coffin et al. 
1997; Gao et al. 2003). Ribosome occasionally slips at specific sites one nucleotide backward 
(-1 frameshifting) of forward (+1 frameshifting) and translation can continue in alternate 
downstream frame. Another translation-recoding mechanism is stop codon readthrough, 
where a stop codon is occasionally misread as a sense codon allowing translation to continue 
into a downstream ORF (Coffin et al. 1997). Finally, internal ribosome entry site (IRES) was 
proposed to function as a translation mechanism used by some retrotransposons (Meignin et 
al. 2003; Li et al. 2006). Since virus-like particle assembly requires many more copies of Gag 
than Pol the translation recoding mechanisms ensure the proper ratio of these proteins (Wilson 
et al. 1986; Kumar and Bennetzen 1999; Gao et al. 2003). For the elements with single ORF 
the required Gag/Pol ratio may be achieved by posttranslational Pol degradation as it was 
shown for yeast retrotransposons Tf1 and Ty5 (Atwood et al. 1996; Irwin and Voytas 2001).  

 Two major groups of LTR retrotransposons are Ty1/copia and Ty3/gypsy. The 
classification is based on phylogenetic relationship of the catalytic proteins and on the 
organization of the pol region (Hull 2001; Wicker et al. 2007). In the Ty1/copia group, INT 
precedes RT/RH, whereas in the Ty3/gypsy group INT resides at the 3' end of the pol domain. 
Ty3/gypsy group possess the same pol configuration as retroviruses and RT of both groups of 
retroelements show higher similarity while Ty1/copia group is more distantly related (Xiong 
and Eickbush 1990).  

2.2 Replication cycle 

 The replication cycle of LTR retrotransposons comprises transcription, translation, 
reverse transcription and integration of element cDNA into genome (for review see Coffin et 
al. 1997; Kuman and Bennetzen 1999; Sabot and Schulman 2006). 
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 First, synthesis of retrotransposon mRNA molecule is mediated by the cellularly 
encoded RNA polymerase II from a promoter located within the 5' LTR. This mRNA encodes 
the proteins needed for replication, and also serves as the template for reverse transcription. 
Synthesis of mRNA is a well-studied mechanism in plant retrotransposons. A lot of them are 
currently inactive due to a combination of mutation and epigenetic silencing (Hirochika et al. 
1996; 2000). Some of the elements are transcriptionally activated by various biotic and abiotic 
factors (Grandbastien 1998). For example, the expression of tobacco Tnt1 and Tto1
retrotransposons is greatly increased by several abiotic stresses, including wounding and 
application of methyl jasmonate, CuCl2 and salicylic acid (Mhiri et al. 1997; Takeda et al. 
1998). Similarly, various biotic stress factors such as inoculation with bacterial or fungal 
pathogens have been shown to activate transcription of these retrotransposons (Pouteau et al. 
1994; Takeda et al. 1999; Mhiri et al. 1999). Regulatory sequences involved in the activation 
of retrotransposons by stress are similar to those of various stress responsive plant genes 
(Grandbastien et al. 1997). The stress conditions may be benefical for retrotransposons since 
it may be difficult for the host to silence transcription of the retrotransposon and maintain the 
defensive response at the same time (Sabot and Schulman 2006). On the other hand, induction 
of transcription by stress stimuli and subsequent transposition of retrotransposons may play a 
role in adaptive mutagenesis in the host and might be a general way for genomes to evolve 
(Morillon et al. 2000).  

 Translation of retrotransposon's mRNA which specifies the proteins needed for 
replication occurs in the cytoplasm. Gag proteins form virus-like particles (VLPs) where the 
reverse transcription occurs. Typically, two RNA molecules are packaged in one virus-like 
particle. This process is generally selective for the RNA encoding Gag protein that forms the 
VLP. The selectivity is directed by packaging signal in the RNA sequence that is recognized 
by Gag proteins (Sabot and Schulman 2006).  

 Reverse transcriptase is a key enzyme encoded by pol region that is responsible for the 
complex process of transcribing viral RNA into double-stranded DNA. Reverse transcription 
reaction is primed from a cellular tRNA that pairs to a sequence near the 5' LTR (the primer-
binding site, pbs). Resulting DNA intermediate of discrete length is transferred from the 5' 
LTR to the 3´ end of a retrotransposon mRNA molecule, where reverse transcription 
proceeds. This transfer is mediated by identical sequences which are present at both 5´ and 3´ 
ends of the mRNA. A second priming event initiates at a short polypurine rich fragment of 
RNA (polypurine tract, PPT) near the 3' LTR. The resulting cDNA undergoes an additional 
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strand transfer. Finally, reverse transcriptase completes double-stranded DNA synthesis (for 
review of this complex process see Wilhelm and Wilhelm 2001; Kuman and Bennetzen 
1999).  

 The integration of cDNA into genome is a unique enzymatic process shared by 
retroviruses and retrotransposons that is divided into several stages including binding and 
processing of LTRs ends, recognition and cleavage of a target DNA and joining of LTRs to a 
host genome (Hindmarsh and Leis 1999; Lewinski and Bushman 2005). All phases are 
catalyzed by enzyme integrase that is encoded within pol region. As a result of integration a 
short direct repeat flanking the retroelement (target site duplication, TSD) is produced. 
Specificity of integration has been studied in both retroviruses and retrotransposons. Variable 
factors are supposed to potentially influence DNA target selection and it was shown that 
specific retroelements have unique integration site preferences. For example, the HIV-1 
retrovirus favours integration into actively transcribed regions and MLV retrovirus prefers 
integration near transcription start sites whereas ASLV retrovirus shows no such preference 
(Mitchell et al. 2004). Integration site selection was also well-studied in yeast LTR 
retrotransposons. Ty1 and Ty3 retrotransposons integrate upstream of PolIII transcribed genes 
while Ty5 preferentially inserts into heterochromatin at telomeres (Buschman 2003). On the 
other hand, most of Drosophila LTR retrotransposons exhibit no specific integration into the 
host genome with the exception of three subgroups (gypsy, ZAM and Idefix) where the 
integration specificity was influenced by structural features of target DNA (Nefedova et al. 
2011). In plants, centromeric regions of chromosomes consist of arrays of highly repetitive 
satellite DNA and centromeric retrotransposons (CRs). These retroelements possess an 
integrase chromodomain and they represent a fraction of CRM clade of Chromoviruses 
belonging to Ty3/gypsy group of LTR retrotransposons (Gorinsek et al. 2004; Gorinsek et al. 
2005; Kordis 2005; Neumann et al. 2011). 

3. Ogre retrotransposons 

 Ogre elements were first discovered in legumes, Pisum sativum and Vicia pannonica
(Neumann et al. 2003; Neumann et al. 2006) and subsequently in other plant taxa (Salicaceae
and Solanaceae; Macas and Neumann, 2007). Schematic representation of Ogre element from 
Pisum sativum is shown in Figure 1. These Ty3/gypsy plant retrotransposons are extreme in 
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their size (reaching up to 25 kbp) and they are often constitutively transcribed in contrast to 
most plant retrotransposons described so far. Their primer binding site (pbs) is 
complementary to the 3´ end of tRNAarg and their 3´ untranslated region (UTR) often 
contains array of tandem repeats varying in total size, sequence, and length of the repeat 
monomers (Macas et al. 2009). In some species they can constitute a large portion of the 
genome. In Vicia pannonica they make up 38 % of nuclear DNA and Ogre elements from 
Glycine max (GmOgre) described subsequently by Laten et al. (2009) represent the largest 
copy number family in soybean, accounting for 15 % of all elements identified in soybean 
genome (Du et al. 2010).  

 RT domains of Ogre-like retrotransposons were found also in Caryophyllaceae family 
(in Silene latifolia) during the screen of genomic library with probes prepared by amplifying 
the conservative parts of transposable elements (Cermak et al. 2008). FISH analysis revealed 
that Ogre elements are localized on all Silene chromosomes with the exception of Y 
chromosome where they are almost absent. In Vicia pannnonica and Pisum sativum the Ogre 
elements are evenly dispersed on all chromosomes (Neumann et al. 2006; Macas et al. 2009).  

 This distinct group of  Ty3/gypsy elements is characterized by two specific features – 
presence of long extra ORF with unknown function upstream to gag and the stop codon-rich 
region separating the gag-pro and rt/rh-int coding sequences. It was shown that this region is 
spliced out of part of Ogre-PS transcripts (Neumann et al. 2003).  

Figure 1. Schematic representation of Ogre element from pea. A. Structure of Ogre-PS. The coding 
sequences ORF1, ORF2 and ORF3 are represented by light grey boxes, dark grey boxes indicate 
regions separating individual ORFs, and cross-hatched boxes represent putative 5´ and 3´ untranslated 
region. LTR, long terminal repeat; PBS, primer binding site with complementarity to the 3´ end of 
tRNAarg; PPT, polypurine tract; TSD, target site duplication. B. Positions of stop codons in Ogre-PS
sequence plotted in three reading frames. Each vertical line represents a single stop codon (Neumann 
et al. 2003, modified). 
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3.1 Splicing of Ogre elements  

� RNA splicing is a process that removes intervening sequences (introns) and joins 
coding regions (exons) in primary transcript. The chemistry of splicing involves two 
transesterification reactions. In the first one, a nucleophilic attack by the 2�-OH of an 
adenosine nucleoside in the intron (the branchpoint) cleaves the 5� splice site. This results in 
the formation of a free 5� exon and a lariat structure composed of the intron attached to the 3�
exon. In the second, the free 3�-OH of the 5� exon attacks 3� splice site breaking the 
phosphodiester bond while forming a new bond between the 5� exon and 3� exon, free intron is 
released in the form of lariat. The 5� and 3� termini of introns in most cases contain 
dinucleotides GT and AG, respectively (Breathnach et al. 1978; Mount 1982; Burset et al. 
2000). Splice site usage can be modulated by auxiliary cis-elements known as exonic and 
intronic splicing silencers and enhancers which are recognized by trans-acting splicing factors 
(Ladd and Cooper 2002; Caceres and Kornblihtt 2002). The splicing process is catalyzed by 
the spliceosome, a complex RNA-protein aggregate, which consists of small nuclear 
ribonucleoprotein particles (snRNPs), each containing a small stable RNA bound by several 
proteins, and a large number of splicing factors (Jurica & Moore 2003).  

Transcripts of retroelements can undergo the splicing events that generate subgenomic 
RNAs. Full-length retroviral RNA transcripts serve as a template for translation of gag-pol
region and they also represent genomic RNAs which are packaged into progeny virion 
particles. Spliced transcripts of simple retroviruses encode the Env protein which is required 
for cell-to-cell transfer. Complex retroviruses generate both singly and multiply spliced 
transcripts that encode the env gene product and the sets of regulatory and accessory proteins 
(Coffin et al. 1997). Drosophila LTR retrotransposon copia uses alternative splicing of RNA 
to generate a subgenomic transcript in order to regulate the ratio between Gag and Pol 
proteins. Full length copia RNA containing gag and pol regions is expressed at a far lower 
level than subgenomic spliced RNA encoding gag products exclusively (Brierley and Flavell 
1990). Alternative splicing as a mechanism of regulation of Gag:Pol ratio was also proposed 
for Ty3/gypsy centromeric retrotransposon of rice (CRR). The removing of RT-coding 
domain by splicing together with alternative usage of several different donor splice sites can 
suppress translation of pol region while gag-pro domains remain unaffected (Neumann et al. 
2007). Splicing was also reported for Bagy-2 (Ty3/gypsy retrotransposon of barley possessing 
an envelope-like ORF) where the spliced transcript is supposed to generate a subgenomic env 
product (Vicient et al. 2001). 
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In all the cases described above the splicing involves the coding part of the elements. 
Nevertheless, in some retrotransposons the non-coding sequences was shown to be spliced out 
and these events resemble the splicing of cellular introns. Functional introns were described in 
zebrafish non-LTR LINE element ZfL2-1 (Tamura et al. 2007), and elements Penelope in 
Drosophila virilis and Athena in bdelloid rotifers (Arkhipova et al. 2003). 

 In Ogre retrotransposons the sequence between protease and reverse transcriptase 
domains contains several stop codons and it was predicted to be removed by splicing 
(Neumann et al. 2003). Splicing of this region would allow efficient translation of rt/rh-int
region which can be in frame with gag-pro sequence. In Pisum sativum two forms of Ogre-PS
transcripts were detected − the full-length and the spliced one. As splicing is only partial and 
transcripts with retained introns possess stop codons localized upstream of rt/rh-int, 
translation occurs for gag-pro sequences only and thus excess of Gag and PRO proteins can 
be expected. Thus, splicing as a mechanism for modulation of the proportion of element-
encoded proteins might be used by Ogre retrotransposons. On the other hand, only full-length 
transcripts of Ogres were detected in Vicia pannonica (Neumann et al. 2006). 

In the pea genome the spliced copies of Ogre-PS were detected (Neumann et al 2003). 
Spliced copy of LINE ZfL2-1 retroelement was also revealed in zebrafish genomic DNA 
(Tamura et al. 2007). Nevertheless these events are very rare since the portion of spliced 
copies for either Ogre-PS or ZfL2-1 retroelements in corresponding genomes is very low (in 
Pisum sativum the ratio of full-length to spliced Ogre-PS sequences is approximately 65:1). 
Integration of spliced copies into the genome must be suppressed because replication of the 
spliced transcripts would lead to gradual replacement of intron-containing elements with their 
spliced variants during genome evolution. Mechanism of recognition of full-length genomic 
RNA for encapsidation was well studied in retroviruses. In general the RNA sequences 
necessary and sufficient for RNA encapsidation (referred to as encapsidation signal or 
packaging signal) which is usually present only in the unspliced genomic RNA is recognized 
by the viral Gag protein. Nevertheless spliced mRNA can be also encapsidated even thought 
with very low frequency (Coffin et al. 1997; Jewell and Mansky 2000). This occasional 
packaging may allow subsequent reverse transcription and reintegration of spliced copy into 
the genome. Spliced and reintegrated transcripts in the genome have been observed also for 
HERV-H elements, a large family of endogenous retrovirus-like sequences found in the 
genomes of humans and other primates, which are supposed to be remnants of exogenous 
retrovirus infection of the germ line which became fixed in the population (Goodchild et al. 



���

�

1995). Thus, such packaging signal might occur within the Ogre intron sequence that would 
lead to the preferable integration of unspliced copies into the genome.  

 Besides splicing of Ogre-PS transcripts, donor and acceptor splice sites were predicted 
for most of Ogre retrotransposons (Macas and Neumann 2007). The putative introns from 
different Ogre families are variable in both length and sequence. Hypothetical splicing of 
predicted introns results in a fusion of gag-pro and pol ORFs into one reading frame, and 
therefore a full polyprotein sequence could be translated.  

3.2 Extra open reading frames in Ogre-like retrotransposons

 Even though the gag and pol genes are believed to be necessary and sufficient for LTR 
retrotransposon life cycle, some of the elements possess additional open reading frames. The 
extra ORF found in the same position as env gene in retroviruses, downstream to pol region in 
the 3' untranslated region (3' UTR), is often referred to as an env-like gene. The env-like gene 
was found in a number of invertebrate Ty3/gypsy elements (Lerat and Capy, 1999) but gypsy
of Drosophila is the only retroelement outside of the retroviruses for which env-like gene 
encoded protein is known to mediate infection (Kim et al, 1994; Song et al. 1994). The env-
like genes were also reported for plants although their function remains unclear since the cell 
wall is thought to present a barrier to retroviral infection. These so-called endogenous plant 
retroviruses include Ty1/copia elements SIRE-1 from Glycine max, Endovir from Arabidopsis 
thaliana, copia_Endovir-like elements from Lotus japonicus and ToRTL1 from Solanum 
lycopersicum (Laten et al. 1998; Kapitonov and Jurka 1999; Laten 1999; Peterson- Burch et 
al. 2000; Holligan et al. 2006). Ty3/gypsy-like endogenous retroviruses comprise Athila from 
A. thaliana, Cyclops and Pigy from Pisum sativum, Calypso from Glycine max, Bagy2 from 
Hordeum vulgare and Rigy2 from Oryza sativa (Chavanne et al. 1998; Vicient et al. 2001; 
Wright and Voytas 2002; Neumann et al. 2005). The hypothetical Env-like proteins show 
little primary sequence similarity. Nevertheless, env genes of retroviruses also display low 
degree of conservation despite their functional role in cellular infection (Coffin et al. 1997; 
Laten et al. 1998). One of the most conserved features of the divergent retroviral Env proteins 
is the presence of transmembrane domain. This domain was predicted in the majority of Env-
like proteins of plant endogenous retroviruses (Peterson-Burch et al. 2000; Wright and Voytas 
2002).  
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 In other plant retrotransposons the extra open reading frames (ORFs) in antisense 
orientation downstream to pol were found, namely in Retand-2 from Silene latifolia, in RIRE2
from rice and in Grande1 from maize (Kejnovsky et al. 2006; Ohtsubo et al. 1999; Martínez-
Izquierdo et al. 1997). The function of these hypothetical proteins remains unclear.  

 The presence of additional ORFs in plant retrotransposons is not restricted to the 
3' UTR only. The additional ORF upstream to gag (called orf0) were previously described in 
RIRE3, RIRE8A and RIRE8B from Oryza sativa (Kumekawa et al. 1999) and in related 
element FRetro3 in Oryza brachyantha (Gao et al. 2009). 

 Another LTR retrotransposons possessing extra ORF in 5' UTR are Ogre elements. It 
was shown for Ogre-PS from pea that its extra ORF contains predicted transmembrane 
domain (Neumann et al. 2003) and therefore might resemble env-like genes although it is 
located at different position. On the other hand, transmembrane domain was reported to be 
present in a broad spectrum of proteins (Krogh et al. 2001) and its prediction does not 
necessarily indicate the Env protein function. In Ogre retrotransposon from soybean 
(GmOgre) another extra ORF downstream to pol region that resembles env-like genes was 
identified. Env-like protein shares approximately 31% identity with that of Calypso (Laten et 
al. 2009, Du et al. 2010). Occurrence of extra ORFs in both 3' and 5' UTR makes GmOgres
exceptional among the plant retrotransposons. Whether the extra ORFs found in Ogres have 
the same function as env genes of retroviruses remains unclear. 

 In a few cases, plant retrotransposons have acquired sequences that do not seem to 
play any role in their life cycle. LTR retrotransposon Bs1 from maize has transduced 
sequences from three different cellular genes, namely proton-dependent membrane ATPase, 
1,4-�-xylan endohydrolase and 1,3-�-glucanase. The transduction events generated a hybrid 
extra ORF containing Bs1 gag domain fused to the transduced sequences (Bureau et al., 1994;
Jin and Bennetzen 1994; Palmgren 1994; Elrouby and Bureau, 2001). Moreover, the BS1 
protein encoded by a novel chimeric gene may be involved in reproductive development of 
maize (Elrouby and Bureau, 2010). 3' noncoding region of another element, Tat1-3
retrotransposon from Arabidopsis thaliana, contains the sequence similar to the nontranslated 
leader sequence of a gene for pyrroline-5-carboxylate reductase (AT-P5C1) and a remnant of 
related retrotransposon (Wright and Voytas 1998).  

 The capture of cellular genes is the unique mechanism of pathogenicity of close 
relatives of Ty3/gypsy retrotransposons, the retroviruses. Simplistic model for retroviral 
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transduction of cellular genes involves a retroviral integration upstream of the gene to be 
transduced and readthrough transcription from the retrovirus that generates a large RNA 
containing downstream cellular sequence. Alternatively, the viral and cellular sequences are 
fused by the deletion in DNA and the transcription produces a hybrid viral/cellular RNA. 
A chimeric RNA molecule and a normal viral RNA molecule are packaged into one virion. 
Non-homologous template switches between these two RNA molecules during reverse 
transcription may lead to the incorporation of the cellular gene sequence into the retroviral 
genome (reviewed in Coffin et al. 1997). This mechanism was proposed to give rise to the 
ORF1 of Bs1 retrotransposon since this chimeric ORF is reminiscent of many transduced 
cellular genes (lack of native promoter and introns, fusion with GAG sequence; Elrouby and 
Bureau, 2001). 

The extra ORFs of plant retrotransposons may represent transduced sequences as it 
was shown for Bs1 element or they can play some role in elements life cycle. The question 
regarding the function of the extra ORFs still remains unanswered. 
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AIMS OF THE WORK

 My PhD research was focused on two specific features of Ogre elements which make 
them unique among other retrotransposons: an extra open reading frame (ORF1) upstream of 
the gag-pol sequences and a stop codon-rich region separating protease and reverse 
transcriptase coding domains.  

 Previous data suggested that the non-coding region between protease and reverse 
transcriptase represents an intron which can be spliced out of Ogre transcripts in Pisum 
sativum (Neumann et al. 2003). Nevertheless, pea genome contains a small fraction of Ogre 
copies that also lack this region. Therefore, the aim of my work was to find out whether the 
spliced transcripts are produced from the intron-less copies in the genome or the splicing of 
Ogre full-length transcripts occurs in the cell. We studied transcription patterns of Ogre 
subfamilies in Medicago truncatula as well as the splicing of intron sequence of pea Ogre 
in vivo using transgenic hairy root culture system. 

 The second aim of my work was to investigate the origin and potential function of the 
additional ORF located upstream of gag region in Ogre elements. This study was performed 
using bioinformatic approaches and included all Ty3/gypsy retrotransposons in order to put 
extra ORFs from Ogres into phylogenetic context of the whole group or related elements.  
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RESULTS 

Part I 

Functional analysis of splicing of Ogre retrotransposons 



���

�

Steinbauerová V., Neumann P., Macas J. (2008) Experimental evidence for splicing of intron-
containing transcripts of plant LTR retrotransposon Ogre. Mol Genet Genomics 280: 427-436 

Abstract    

Ogre elements are a distinct group of plant Ty3/gypsy-like retrotransposons characterized by 
several specific features, one of which is a separation of the gag-pol region into two non-
overlapping open reading frames: ORF2 coding for Gag-Pro, and ORF3 coding for RT/RH-
INT proteins. Previous characterization of Ogre elements from several plant species revealed 
that part of their transcripts lacks the region between ORF2 and ORF3, carrying one 
uninterrupted ORF instead. In this work, we investigated a hypothesis that this region 
represents an intron that is spliced out from part of the Ogre transcripts as a means for 
preferential production of ORF2-encoded proteins over those encoded by the complete 
ORF2–ORF3 region. The experiments involved analysis of transcription patterns of well-
defined Ogre populations in a model plant Medicago truncatula and examination of 
transcripts carrying dissected pea Ogre intron expressed within a coding sequence of chimeric 
reporter gene. Both experimental approaches proved that the region between ORF2 and ORF3 
is spliced from Ogre transcripts and showed that this process is only partial, probably due to 
weak splice signals. This is one of very few known cases of spliced LTR retrotransposons and 
the only one where splicing does not involve parts of the element’s coding sequences, thus 
resembling intron splicing found in most cellular genes.  
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RESULTS 

Part II 

Analysis of additional open reading frames in Ogre-like and other Ty3/gypsy elements 

�
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Steinbauerová V., Neumann P., Novák P., Macas J. (2012) A widespread occurrence of extra 
open reading frames in plant Ty3/gypsy retrotransposons. Genetica: accepted 

Abstract    

LTR retrotransposons make up substantial parts of most higher plant genomes where they 
accumulate due to their replicative mode of transposition. Although the transposition is 
facilitated by proteins encoded within the gag-pol region which is common to all autonomous 
elements, some LTR retrotransposons were found to potentially carry an additional protein 
coding capacity represented by extra open reading frames located upstream or downstream of 
gag-pol. In this study, we performed a comprehensive in silico survey and comparative 
analysis of these extra ORFs in the group of Ty3/gypsy LTR retrotransposons as the first step 
towards our understanding of their origin and function. We found that extra ORFs occur in all 
three major lineages of plant Ty3/gypsy elements, being the most frequent in the Tat lineage 
where most (77%) of identified elements contained extra ORFs. This lineage was also 
characterized by the highest diversity of extra ORF arrangement (position and orientation) 
within the elements. On the other hand, all of these ORFs could be classified into only two 
broad groups based on their mutual similarities or the presence of short conserved motifs in 
their inferred protein sequences. In the Athila lineage, the extra ORFs were confined to the 
element 3' regions but they displayed much higher sequence diversity compared to those 
found in Tat. In the lineage of Chromoviruses the extra ORFs were relatively rare, occurring 
only in 5' regions of a group of elements present in a single plant family (Poaceae). In all 
three lineages, most extra ORFs lacked sequence similarities to characterized gene sequences 
or functional protein domains, except for two Athila-like elements with similarities to LOGL4
gene and part of the Chromoviruses extra ORFs that displayed partial similarity to histone H3 
gene. Thus, in these cases the extra ORFs most likely originated by transduction or 
recombination of cellular gene sequences. In addition, the protein domain which is otherwise 
associated with DNA transposons have been detected in part of the Tat-like extra ORFs, 
pointing to their origin from an insertion event of a mobile element. 
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CONCLUSIONS 

 This thesis has contributed to the functional and structural characterization of Ogre 
retrotransposons that represent a distinct group of plant Ty3/gypsy retroelements. 

 It was shown that Ogre LTR retrotransposons possess functional introns which are 
spliced out from their mRNA. At least some portion of spliced transcripts of Ogre elements in 
Medicago truncatula arise from splicing events in the cells and not from the transcription of a 
small fraction of intron-less copies present in the genome. Expression of chimeric intron-
containing GUS constructs in vivo allowed us to demonstrate that splicing of the intron from 
pea Ogre element is functional but revealed its low efficiency which left a part of the 
transcripts unspliced. Thus, it can be speculated that these unspliced transcripts serve as 
preferred templates for Ogre replication, facilitating the persistence of the intron-containing 
elements in the Ogre population.  

 In order to reveal the origin and function of additional ORFs of plant retrotransposons 
we performed a comprehensive in silico survey and comparative study of these extra ORFs in 
the group of Ty3/gypsy LTR retrotransposons. We found that extra ORFs occur in all three 
major lineages of plant Ty3/gypsy elements (Tat, Athila and Chromoviruses), being the most 
frequent in the Tat lineage including Ogre retrotransposons. Sequence similarities detected 
between 5' extra ORFs from Ogres and 3' extra ORFs from related ATLANTYS-LC-like
elements strongly suggest that additional ORFs in these two groups are of common origin. 
They probably originated from an insertion of a transposable element because of the presence 
of plant mobile domain that is often associated with the transposase of MULE transposons. 
Transduction of cellular gene sequences represent another potential mechanism of extra ORF 
origin. Extra ORFs with similarity to cellular genes pointing to such event were found in two 
elements belonging to Athila lineage and in some Chromoviruses. The function of additional 
ORFs still remains unclear. 
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