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1. Cell biology of the male gametophyte

1.1. Stamen development

The developmental events leading to a stamen formation follows the pattern of floral
meristem identification. Stamen primordia are initiated on the meristem surface within the
third whorl as a result of specific floral homeotic MADS-box genes co-expression, including
APETALA3 (AP3), PISLILLATA (Pl), AGAMOUS (AG), and SEPALLATA1/2/3/4 (SEP1/2/3/4) in
Arabidopsis. Misexpression of participating transcriptional regulators is well known to
produce messy floral architecture, for instance additional stamens replacing carpels in the
neighbouring fourth whorl, if male part is considered in superman mutation (Bowman et al.
1992). Stamen primordia appear after the outer sepal and petal primordia have initiated but
prior to the initiation of inner carpel primordia. Later, the stamen primordium prolongs and
differentiates into two compartments, filament and anther. The filament stands as a holder
carrying conducting tissue while the anther contains both nonreproductive and reproductive
tissues that are responsible for the production and release of mature pollen grains (Scott et
al. 2004).

The anther forms two bilaterally symmetrical pollen sacks with two loculi in each.
Developmentally, the anther surrounding pollen sacks consists of several cellular layers
originating from three layers called L1, L2, and L3 of the floral meristem that can be
recognized histogically and functionally and that play a role in the anther differentiation
process. The outermost L1 layer establishes the epidermis and stomium which is responsible
for splitting of anther wall during dehiscence. Thus the programmed cell death (PCD) of the
stomial cells is necessary for pollen release and general plant fertility. The middle L2 layer
produces archesporal cells that divide periclinally into outer parietal cells and inner
sporogenous cells. Parietal cells by further divisions form the outer part of the tapetum,
middle wall layer(s) and endothecium, which enforces the power for mechanical opening of
the anther by the unique mechanism of the cell wall thickening (Scott et al. 2004). The
mutation in MYB26 gene causes the male sterility by defective cell wall fortification in this
endothecial layer which unables the opening (Steiner-Lange et al. 2003). The sporogenous
cells give rise by further divisions to microsporocytes or meiocytes and such differentiation

establishes the male germ lineage (Yang and Sundaresan 2000). The last L3 layer contributes



to the formation of a connective, vascular bundle, and the inner part of tapetum (Goldberg
et al. 1993). The tapetum is a nutritive tissue forming the inner wall of the pollen sack and
supporting the development of microspore mother cells due to numerous lateral
interconnections by plasmodesmata (Heslop-Harrison 1971a, 1971b). However, their lack
plasmodesmata on their face towards middle layer. Sugars destinated to pollen in the
loculus have then to cross the middle layer and the tapetal layers by the apoplasmic
pathway; it is suggested that these two envelopes could be involved in the control of sugar
transport from the outer anther wall layers to the locular fluid (Clément and Audran 1995).
Several genes have been identified genetically that are critical for early anther
development and microsporogenesis (reviewed by Wilson and Yang 2004). One of the
earliest acting gene is the SPOROCYTELESS/NOZZLE (SPL/NZZ) playing a role at early anther
differentiation with strong expression in microsporocytes and tapetum (Fig. 1). spl/nzz
mutant plants are male-sterile producing no sporogenous and tapetal cells (Schiefhaler et al.
1999, Yang et al. 1999, Ito et al. 2004). This gene encodes a transcription factor that directly
regulates a gene of EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS (EMS/EXS). Its
mutation causes the formation of additional male sporocytes along with lack of tapetal cells
but resulting in non-viable pollen, which implicates the irreplaceable role of tapetum
(Canales et al. 2002, Zhao et al. 2002). EMS/EXS gene encodes a putative leucine-rich repeat
receptor protein kinase. Another mutation in the TAPETUM DETERMINANT1 (TPD1) gene
showed the same phenotype as that of ems/exc (Yang at al. 2003) and it is known to be a
putative signal peptide for secretion. Taken together, EMS/EXC and TPD1 may interact as a
receptor and a ligand determining the microsporocytes and tapetal cell formation (Ma 2005,
Wilson and Zhang 2009). Next, DYSFUNCTIONAL TAPETUM (DYT1), a putative bHLH
transcription factor, is likely to be involved in regulation of AMS and MS1 (Zhang at al. 2006).
ABORTED MICROSPORES (AMS) is a member of MYC class bHLH transcription factor family.
Although ams plants have both tapetum and male sporocytes that undergo meiosis, both
tapetum and microspores degenerate soon afterwards (Sorensen et al. 2003). MALE
STERILITY (MS1), a nuclear protein with a PHD-finger domain accompanying RING finger and
putative leucine zipper motifs, is also required for early microspore development and proper
exine formation (Wilson et al. 2001, Ito and Shinozaki 2002, Ariizumi et al. 2004, Vizcay-
Barrena and Wilson 2006, Ito et al. 2007). MYB33/65 are GYMYB-like TFs regulated by

SPL/NZZ either directly or via DYT1 (Fig. 1). Their mutations caused premeiotic abortion of
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microsporocytes probably due to aberrant tapetum development (Millar and Gubler 2005).
MYB103 is regulated by EMS/EXS and it is necessary for proper tapetum and microspore
development (Zhang et al. 2007). In addition, MYB32 is expressed in tapetum and its
mutation leads to aberrant pollen development and partial male sterility (Preston et al. 2004)

(Fig. 1).
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Fig 1. Regulatory network determining the anther cell wall specification, tapetum and pollen wall
development indicating downstream regulation (=), and a protein-protein interaction ( —) compiled

from two sources: Wilson and Zhang, 2009 (blue lines) and Xu et al. 2010 (red lines).

After microsporogenesis, tapetal cells play an important role in the production of
callase that helps to release individual microspores from the tetrads. In addition, tapetal
cells secrete and deposit various compounds, including flavonoids and structural polymers
such as sporopolenin, the most resistant biopolymer in the nature making the exine of the
pollen wall. The tapetal cells eventually disintegrate and the material is deposited as a part
of the pollen coat. Some of their cytoplasmic contents, including lipids and proteins, may

cause allergic reaction to a human.



1.2. Pollen development

Microsporogenesis is the initial process of the male gametophyte development
producing haploid microspores from the diploid microsporocytes. It is initiated by meiotic
divisions | and Il giving rise to tetrads of microspores. The tetrad is enclosed in a callose (B-
1,3-gluan) cell wall that physiologically isolates the nascent microspores from the
surrounding sporophytic tissue for the establishment, as believed, of the new developmental
programme. Thick callose capsule is subsequently digested by callase secreted by tapetal
cells. Such events demonstrate the tight co-operation between sporophytic and
gametophytic cells for a successful process of pollen formation. At this point, quartet3
mutant plants produce mature pollen grains remaining attached in tetrad position for the
mutation in polygalacturonase which is normally secreted by tapetum.

As microspore grows, the initial three-lobed cell surface gradually evens and
smoothes. The nucleus of an early microspore is located in the centre but later it is pushed
towards the cell wall due to rapid vacuole biogenesis. The large central vacuole seems to be
important for further haploid pollen mitosis I, an extremely asymmetric cell division
producing larger vegetative and smaller generative cell. The vegetative cell makes the pollen
grain itself and includes most of the former cytoplasm enriched by organelles and contains a
large disperse and transcriptionally active nucleus while the generative cell encloses only
very limited cytoplasm and rather condense and less active nucleus. Disruption of cell
polarization dramatically changes the developmental programme and may even lead to a
haploid embryogenesis as often used in plant biotechnologies (Hause et al. 1993, Eady et al.
1995). After pollen mitosis |, the generative cell migrates inward the pollen grain that then
represents the unique cell-within-a-cell structure. In number of plants including Arabidopsis,
the generative cell undergoes pollen mitosis Il to form two sperm cells within a pollen grain
(three-celled pollen). However, in most species (producing two-celled pollen) the second
mitosis occurs during pollen tube growth when penetrating style tissues. Considering the
male germline, the generative cell and later derived sperm cells involve processes that
trigger different development and cell specification including chromatin rearrangement and
histone modification plus germline specific histone H3.3 incorporation and transcriptional
and post-transcriptional regulation by small RNAs pathways (Jones-Rhoades et al. 2006,
Berger and Twell 2011, Borges et al. 2011, Twell 2011). On the cellular level, generative cell

and sperm cells are characterized by condensed chromatin and very limited cytoplasm.
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During the maturation of Arabidopsis pollen, the vegetative cell accumulates carbohydrate
and lipid reserves for later demand during pollen tube growth (Pacini 1996) and similarly
synthesizes mRNAs and proteins which are functionally required for rapid pollen tube
growth after pollination as described earlier in other species (Tupy 1982, Mascarenhas et al.

1984, Masek et al. 2000) (Fig. 2).
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Fig. 2. Male gametophyte development. Diploid microsporocyte undergoes meiosis to produce a
tetrad of haploid microspores embedded in callose wall. After enzymatic digestion by tapetal callase,
individual microspores are released. After two haploid mitosis, the mature pollen grain is ready to land
on stigma (Arabidopsis, tricellular pollen) and growth into the pollen tube delivering two sperm cells
into female gametophyte. In case of bicellular pollen (on the left), the second mitosis of generative cell

occurs later within the pollen tube.

Pollen cell wall displays a complex structure of different materials arranged in several
distinguished layers. The internally laid intine is enriched with cellulose and pectines while
outer exine, having additional sublayers of nexine and sexine, is made predominantly of

sporopollenin, the complex of phenylpropanoids, phenolics, fatty acids, and carotenoids. The
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exine often exhibits a highly decorated pattern characteristic for each plant species. The
origin and genetic control of all pollen wall layers is different. Synthesis of exine is under the
sporophytic control; however, the pattern is initiated by primexine at the tetrad stage. On
the contrary, intine is completely formed and maintained from gametophytic side of the
pollen wall. Exine does not form a completely enclosed layer; at specific spots (apertures) it
is weakened to enable the outgrowth of a pollen tube. The final stage of pollen development
is significant for pollen dehydration and production of osmoprotectants such as sugars,

proline, and glycine-betain (Schwacke et al. 1999).

1.3. Pollen tube growth

Rehydration of a pollen grain after the landing on a stigma is a crucial initiation step
for following vegetative cell activation. Rapid water uptake is accompanied by massive efflux
of ions, sugars, amino acids, enzymes and other compounds. It boosts metabolic activity,
respiration and various subcellular events including formation of vesicles, lipid droplets,
vacuoles, and endomembrane biogenesis. Dynamic cytoskeletal rearrangements, mainly
actin microfilaments, support the aperture, which was already determined during pollen
maturation, for the outgrowth of intine when pollen germinates. Other significant features
include higher dictyosome activity, massive RNA and protein synthesis (Raghavan 1997), and
polysome formation to provide a translational site for stored mRNA/mRNP molecules, which
are essential for pollen germination and early tube growth (Capkova et al. 1994, 1997, Honys
et al. 2000 and 2009). There is the great evidence that the application of translational
inhibitors (cycloheximide) arrests pollen tube growth (Capkova et al. 1980) unlike the
transcriptional inhibitors (actinomycin D) that have no or very mild effect on pollen tube
growth (Lafleur and Mascarenhas 1978, Honys and Twell 2003).

After germination, the vegetative cell becomes highly polarised and self-arranged
into four subcellular zones for the whole period of tube growth: apical, subapical, nuclear
and vacuolar zones from the tip backwards (Raghavan 1997). The apical zone is typical of the
presence of vesicles derived from dictyosomes carrying carbohydrates and fusing with
plasma membranes in the process of exocytosis (Pierson et al. 1990) and endocytic vesicles
bringing various materials into the cell. The very tip is free of cytoskeleton and keeps sharp
but oscillating gradient of Ca®* ions (Malhé et al. 1994, Pierson et al. 1994) which correlates

with oscillating vesicle-trafficking system and depositing methyl-esterified, and deesterified
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and Ca’"-bound pectins into the cell wall and oscillating tip growth (Pierson et al. 1995,
Geitmann et al. 1996). The subapical zone is enriched by most organelles especially
dictyosomes and mitochondria, while vegetative nucleus and sperm cells stay in nuclear
zone, and the last vacuolar zone is occupied by large vacuoles regularly separated by callose
plugs (Cresti et al. 1977) to keep the cytoplasm towards in constant volume when pollen
tubes grows. Pollen tube zonation and intracellular movements are directly generated by
molecular motors (myosin, kinesin) with association to cytoskeletal elements (Pierson et al.
1985, Lancelle et al. 1987, Raghavan 1997). The composition of the cell wall depends on the
location along with pollen tube; at the very tip it is composed of pectins providing very
elastic property for the active tip growth, subapically the inner cellulose wall is added for
mechanical support and further backwards callose is deposited from the inner site to add
even more resistance during the growth through transmitting tissue making the cell wall

finally three-layered.
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2. Molecular biology and genetics of the male gametophyte

2.1. Transcriptional regulation
Initiation:

Gene expression is the fundamental process to support the life of the cell and it
involves multiple steps of regulation occuring in various subcellular compartments. The
process has been traditionally divided into following events: signalling, chromatin
remodelling, transcription, mRNA processing, post-transcriptional regulation and distribution
of mRNA, translation, post-translational regulation, and degradation. It is obvious that such
cascade of information flow represents the complex machinery and needs to be very well
orchestrated. Each step also allows the cell to regulate the temporary need according to the
internal or external signals at multi-level regulatory manner and therefore each step plays its
own important role during the gene expression. However, the transcriptional control is
considered as the primary level of regulation of the fate of a single cell/multicellular
organism. The key point of the transcriptional regulation is the initiation of transcription that
is tightly associated with the chromatin remodelling. The whole process is controlled by a
diversity of proteins involved in specific DNA-protein and protein-protein interactions that
finally help to place the RNA polymerase on promoters of regulated genes. In eukaryotes,
three different enzymes (RNA polymerase I, Il, and Ill) catalyse the transcription of different
RNA molecules. RNA polymerases |, located in the nucleolus, generate precursors of
ribosomal RNA (45S pre-rRNA) later processed into 25/28S (plant/animal), 5.85 and 18S
rRNAs. RNA polymerase Il transcripts all protein-coding genes producing pre-mRNA. The
regulation of transcription by RNA polymerase Il is the considered subject of this chapter.
Finally, RNA polymerase il catalyses the origin of tRNAs, 55 rRNA, and a variety of small
RNAs including spliceosomal U6 and SRP-specific RNA.

The expression of protein-coding genes, as mentioned, is regulated by multiple
protein-binding DNA sequences. These include promoter elements, promoter-proximal
elements and distant enhancers. The promoter is a regulatory part overlapping tens of
nucleotides upstream of translational initiation site and includes TATA box, CpG islands, and
other elements that control the position of RNA polymerase |l for the transcription. The
sequence which is recognized as a TATA box usually lies 25-35 bp upstream of the start site
and is very conserved. Even a single mutation significantly decreases the level of
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transcription. Instead of TATA-box, some eukaryotic genes contain an alternative but less
conserved promoter element called the initiator. Despite those well-defined elements, many
protein-coding genes, typically low-rate expressing house keeping genes require GC-rich
stretch, the islands of 20-50 nucleotides situated within about 100 base pairs upstream of
the start region. Besides those elementary promoter elements, there are other sequences
known as promoter-proximal elements lying within 100-200 nucleotides upstream of the
start site important for cell-type specific gene expression in terms of tissue and
developmental stage delimitations. Additionally, the transcription of many genes can be
remarkably stimulated by enhancers located thousands/tens-of-thousands base pairs from
the start site but also they are frequently found downstream in 5’UTRs, intron or exon
sequences or even behind the stop codon of the controlled gene. Like promoter-proximal
elements, many enhancers are cell-type-specific. Taking together, it is notable that (not only)
plant promoters harbour surprisingly high amount of variation, mostly due to specific cis-
elements, that significantly affect expression levels and support the stability yet plasticity of
plant development under various biotic and abiotic conditions.

Proteins controlling the pre-mRNA biogenesis can be classified into four different
functional groups: (1) chromatin-associated proteins, (2) the basic transcription apparatus
and intrinsic associated factors, (3) large multi-subunit coactivators and other cofactors, and
(4) gene-specific DNA-binding transcriptional factors.

(1) Chromatin-associated proteins. Chromatin structure can operate in two distinct
states: euchromatin which is open and accessible for transcriptional machinery and
heterochromatin which is closed and inactive for gene expression. The ability of the flexible
change between these two states is the presumption for active transcriptional regulation.
Proteins responsible for such dynamic rearrangement include factors that covalently modify
histones and remodelling complexes necessary for chromatin reorganization. Covalent
modification — histone acetylation — promotes chromatin unfolding and is characteristic for
actively transcribed regions. It is catalysed by acetyltransferase and associated with
coactivators. On the other hand, histone deacetylation triggers chromatin condensation and
deacetylase activity is often associated with corepresors (Li et al. 2002). Chromatin
remodelling complexes (such as SWI/SNF and ISWI complexes) actively hydrolyze ATP for
local reorganization of nucleosomes in two pathways; by sliding nucleosomes in cis or

displacing nucleosome octamers in trans manner. SWI/SNF are placed with the help of
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enhancer-binding factor operating upstream of the initiation site. Increasing evidence
suggests that the putative plant SWI/SNF complexes control transcription of genes involved
in many developmental processes such as floral organ identification and embryogenesis
(Hurtado et al. 2006, Archacki et al. 2009).

(2) The basic transcription apparatus and intrinsic associated factors represent the
general transcriptional factors that play an important role in correct placing the RNA
polymerase Il on promoter sequences. These general transcription factors comprise TFIIA,
TFIIB, TFIID, TFIIE, TFIIF, and TFIIH. Most of them are multimeric proteins. The largest general
TF is TFIID, which consists of TATA box-binding protein (TBP) and thirteen TBP-associated
factors (TAFs). TBP is extremely conserved in all eukaryotes and binds the TATA box in a
saddle-shape position. Once TBP has bound, it recruits TFIIB and subsequently a preformed
complex of TFIIE, TFIIF, and TFIIH. The last has a kinase activity necessary for
phosphorylation of the C-terminal domain (CTD) of RNA polymerase I, its separation from
the associated factors and transcription start. Moreover, TFIIH harbours two key activities.
First, it has a helicase activity important for DNA accessibility and second, it exhibits a
histone acetylase activity and so it can function as a transcription coactivator by histone
acetylation in the TATA box vicinity. The TAF subunits of TFIID appear to play a role in
initiating of the transcription from promoters lacking the TATA box.

(3) Large multi-subunit coactivators and other cofactors represent heterogenous
class of regulatory proteins including Mediator complex of about 20 subunits that essentially
act as a molecular bridge between activation domains and RNA polymerase Il by binding to
those components directly and thus contributing to the integration of signals from several
activators at a single promoter.

(4) Gene-specific DNA-binding transcriptional factors can act as activators or
repressors and can interact with chromatin-remodelling complexes. In principle, these
specific transcription factors bound to gene specific cis-elements and themselves are
expressed in a tissue/cell-type-, temporal- or stimulus-dependent-specific manner and are
therefore responsible for the specificity of gene expression. Transcription factors can
interact directly with different components of the general machinery and with coactivators,
affecting complex formation and provide, by combinational manner, another level of
transcription regulation. Specific transcription factors are modular proteins with distinct and

functionally separable domains, such as DNA-binding and activation domains. According

15



their DNA-binding domain and other properties they can be grouped into distinct families

that are described later in an extra chapter.

Elongation and termination:

Once the polymerase (RNPII) has transcribed about 25 bases and pre-mRNA emerged
from the protein complex, the 5 end is modified by capping enzyme complex, the C-
terminus of RNPIl is phosphorylated and further elongation is highly processive until it
passes the polyadenylation signal that directs pre-mRNA 3’ end cleavage and enables its
further polyadenylation (Phatnami and Greenleaf 2006). RNA polymerase then can
terminate at multiple sites located over a distance of 0.5-2 kb of this poly(A) additional tail.
The protein complex responsible for such action is associated with phosphorylated carboxyl-
terminal domain of the RNA polymerase Il which serve as a flexible functional platform not
only for polyadenylation but also other post-transcriptional modification including capping

of nascent pre-mRNA, splicing of introns and cleavage behind polyadenylation signal.

2.2. Regulatory sequences

Up to date, a bulk of pollen-specific genes has been identified, making it possible to
analyse their promoters including the potential regulatory sequences driving the specificity
of their expression. Several pollen-specific cis-elements such as AGAAA, TCCACCATA and
GTGA, have been already identified in many plant species (Twell et al. 1989, Twell et al. 1991,
Eyal et al. 1995, Bate and Twell 1998, Hamilton et al. 1998, Rogers et al. 2001). Indeed,
precise analysis of function of such motifs is a fruitful approach to reveal and understand the
mechanisms of cell-specific gene regulation during pollen development in plants.

AGAAA and TCCACCATA motifs were well described within tomato LAT52 promoter
by Bate and Twell (1998). The promoter is active from pollen mitosis | but the accumulation
of respective transcripts substantially increases during pollen maturation. Sequence analysis
of the LAT52 promoter revealed the presence of all major cis-regulatory elements required
for pollen-specific transcription within the upstream region of -492 to -52. This region was
shown to comprise three independent activator domains A, B, and C, each sufficient for
transcriptional regulation. The PBIl motif (TGTGGTT) within the domain B functions as
pollen-specific enhancer element. Domain C contains an activator unit -72 to -52 (sub-

domain C2) embodying two novel co-dependent regulatory elements AGAAA and
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TCCACCATA. It was demonstrated that the transcriptional activity of LAT52 promoter is
controlled by a complex of pollen-specific cis-regulatory elements in a highly cooperative
manner.

Similarly, AGAAA and GTGA motifs were described to regulate anther- and pollen
stage-specific expression of two distinct genes, OsIPA and OsIPK. OsIPA encodes a protein
similar to expansins, pollen allergens, and is activated during the late stage of pollen
development, whereas, Os/PK promoter is active in developing anther till the pollen
maturation and encodes a CDPK, a calcium-dependent protein kinases (Gupta et al. 2007).

In addition to known regulatory sequences, recently described cis-elements in SBgLR
gene of Solanum tuberosum were demonstrated to drive the late pollen specific expression.
A detailed promoter dissection analysis revealed that the region from -345 to -9 (counted
upstream from ATG as +1 site) was sufficient in restricting gene expression specifically in
pollen (Zhou et al. 2010). Moreover, the region between -345 and -269 was found as an
enhancer while the newly described motif lies in the region of -253 to -227 and suppresses
the function of nearby palindrome TTTCTATTATAATAGAAA in the region of -227 to -209.
Interestingly, two pollen-specific palindrome motifs here TTTCT and AGAAA surround a
putative TATA box and from this site downstream to ATG they are presented in additional
nine copies plus one of GTGA. Besides the two known motifs (AGAAA/TTTCT and GTGA), the
authors showed their spatial and combinational distribution within the promoter to affect
the specific regulation of SBgLR gene expression. Its protein shares an 81% homology to
SB401, encoded by a pollen-specific gene, that bounds to microtubules and actin filaments.
Hence the SBgLR may be involved in cytoskeletal organization during pollen development
(Zhou et al. 2010).

Detailed analysis of another well-described tobacco pollen-specific gene NTP303
revealed an AAATGA regulatory element of which TGA triplet was shown to comprise an
active part of the motif (Weterings et al. 1995, Verelst et al. 2007). This motif is completely
conserved within the similarly regulated promoter of the Bp10 gene from Brassica napus
encoding the NTP303 homologue. In addition, distal region of NTP303 promoter shows an
extensive overlap (CTTGTGTGGTTAAT) with a BPIIl region of tomato LAT52 promoter.

In Arabidopsis, three nuclear-encoded genes for mitochondrial Complex | (nCl)
subunits (PSST, TYKY, and NADH binding protein) were found to share promoter regulatory

sequences responsible for enhancement of their expression in pollen and anther wall. In
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those genes, the common motif TGTGGTT involved in such specific regulation has a similarity
to a “pollen box” (52/56 box) in inverted orientation. It is present in two tomato pollen-
specific genes LAT52 and LAT56 (Twell et al. 1990, 1991) and in promoters of two pollen-
specific pectin esterase genes from Brassica campestris (Kim et al. 1997). Obviously,
regulatory sequences in those three mitochondrial Complex | genes play an essential role for
correct spatial and temporal activity since anther/pollen development is highly energy-

demanding process in plants.

2.3. Specific transcription factors

The genome-wide comparison of transcription factors among eukaryotic organisms
revealed the evolutionary consequence of diversity in the regulation of transcription
reflecting the biology, life style, strategy, and adaptation of various species. Each of
individual eukaryotic kingdoms (plants, animals, fungi) has its own set of particular
transcription factor families and genes.

Among 19 families that are shared between animals and plants, more than 14 are
larger in plants than in animals. Such dramatic expansion in plants is not only as a result of
gene/genome duplication but also as a frequent adaptive response to selection pressure in
plants. Interestingly, bioinformatic analysis indicated that TF families have higher
duplicatibility than genes involved in most functions in Arabidopsis (Shiu et al. 2005, Qu and
Zhu 2006). In most cases, the TF family counterparts in Arabidopsis and rice genomes are of
similar sizes. There are, however, a few exceptions in which the numbers of members within
a family differ substantially between Arabidopsis and rice including WRKY, NAC, bZIP, MADS,
ALFIN-like, GRAS and C2C2-dof families (Qu and Zhu 2006). There are about 20 families
represented specifically in plants and several of them are at the same time the most
abundant families in Arabidopsis at all, namely AP2/EREBP, NAC, and WRKY. That clearly
reflects the uniqueness of the plant kingdom and the evolutionary adaptation for plant-
specific functions (considering settled lifestyle, balancing environmental changes etc.).
Members of AP2/EREBP families are involved in development, cell proliferation, secondary
metabolism, abiotic and biotic stress response and ABA/ethylen response. Genes of NAC
specifically regulate developmental processes including pattern formation and organ

separation, whereas WRKY transcription factors are mostly involved in defence response.
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The other highly represented and plant-specific gene families represent Dof, CO-like,
YABBY (all from C2H2 superfamily), GRAS, Trihelix, TCP, ARF, C3H-type, SBP, Win-like,
AB13/VP1, Alfin-like, EIL, LFY, and ARF-Aux/IAA, HB, MADS TFs. On the other hand, there are
several gene families comprising transcription factors playing roles specifically in animals and
therefore not represented in the Arabidopsis genome like NHR (C8-Zn2), Adf-1, T-Box, ETS,
and Fork head. In addition to other abundant plant families, the MYB superfamily (consisted
of MYB (R1)R2R3 and MYB-related) which is otherwise present in all model species, is
dominant just in plants where it represents the largest superfamily of all counting about 180
gene members.

The classification of transcription factor families follows the functional organization
of the factors with the most significance atributed to the DNA-binding domain playing the
cognitive role in targeting specific cis-elements. The other prominent feature is the protein-
protein interaction domain enabling the interaction with the RNA polymerase Il or with
other co-factors, either positively or negatively. Regarding the protein secondary structure,
several distinct motifs were identified to mediate DNA binding properties. Such motifs have
been used to classify transcription factors into families.

(1) Helix-turn-helix was the first described motif in a large number of various
transcription factor genes of different classes suggesting its importance in regulatory
activities including homeobox proteins, MYB, HSF factors (Riechmann et al. 2000, Stracke et
al. 2001, von Koskull-Déring et al 2007). It contains two a-helixes separated by three amino
acid spacer in rigid 120° angle. The complete factor is set together as homo- or heterodimer.
This structure is embedded in a homeodomain of 60 amino acids that consists of three a-
helices and a flexible N-terminal arm. Helix Ill, the recognition helix, packs against the DNA
major groove and is responsible for specific contacts with DNA (Gehring et al. 1994,
Wolberger 1996). Homeodomain-encoding genes share not only sequence similarity, but in
general they play related roles in planta as well, predominantly during development.

(2) Zinc-finger motif is a proposed structure in which a loop of two B-sheets and one
a-helix contains twelve amino acids including, in the typical case, two invariant cysteine and
two invariant histidine residues that coordinate one zinc atom, so called class | C2H2 finger
(Ciftci-Yilmaz and Mittler 2008). However, this structure can be modified into class IV C3H by

replacing one histidine residue with another cystein; this group is typical for plants (Wang et
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al. 2008). Alternatively, there is a pair of fingers binding two zinc atoms in class Il C8 or class
IIl C6 found in yeast. Zinc-finger factors operate as homodimers.

(3) Leucine zipper/bZIP TFs contain characteristic leucine-rich region in which
successive leucine residues occur at every seventh position supporting an a-helix structure.
Moreover, this long side chain tends to dimerize into parallel coiled-coil structure, the
leucine zipper (Oas et al.1990, Zhou et al. 1992). Hence, the leucine zipper is not responsible
only for DNA binding but also for such protein-protein interaction. However, the zipper is not
itself the DNA binding domain, unlike zinc finger or helix-turn-helix, but it helps DNA binding
by facilitating of adjacent region of basic amino acids which interact with DNA directly. In
general, bZIP TFs bind DNA as homo- or heterodimers (Ellenberger et al. 1992).
Heterodimers were shown to convey synergistic activation properties to target genes,
suggesting that heterodimerization serves as an efficient mechanism of signal integration
(Sibéril et al. 2001, Jakoby et al. 2002, Weltmeier et al. 2006, Alonso et al. 2009).

(4) Helix-loop-helix/bHLH TFs contains two a-helices spaced by a loop of several
amino acids. This motif is distinct from the helix-turn-helix in that it can form two
amphipathic helixes, containing all charged amino acids on one side of the helix. Helix-loop-
helix motif plays a role similar to that of leucine zipper allowing dimerization of the
transcription factors and thereby facilitating binding to DNA by the basic motif (Murre et al.
1989). Again, these factors pair as a homodimers or restrict their heterodimerization activity
to closely related members of the family (Toledo-Ortiz et al. 2003). However, the others can
dimerize with bZIP factors or members of R2R3 MYB proteins providing extensive

combinational and various functional activities (Kuras et al. 1997, Heim et al. 2003).

2.4. Male gametophytic gene functions

After releasing microspores from tetrads they need to undergo certain structural and
functional events during the development till the pollen maturation. Those includes
cytoskeletal rearrangement, migration of nucleus, two haploid mitoses, synthesis of reserve
metabolites, cell wall development, etc. Up to date, there are tens of genes playing role
during the male gametophyte development (Table 2), whose mutations, functions and
coding genes were mostly described. Probably the most striking event in pollen
development is the cell cycle regulation which will be described more. It controls the

essential asymmetric division of microspore nucleus during pollen mitosis | producing a
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vegetative and generative nucleus. The later is further divided into two sperm cells during
pollen mitosis Il. Microspore enlarges and produces a large vacuole that pushes the nucleus
towards the cell wall with the cooperation of microtubule rearrangement that essentially
establishes the asymmetrical division. This event seems to be critical for the formation of
germline since induced equal division results in two daughter cells that both exhibit
vegetative cell fate (Eady et al. 1995). Several mutants have been isolated that demonstrate
importance of asymmetric division including sidecar pollen (scp), gemini pollen1l (gem1),

gemini pollen2 (gem2), and two-in-one (tio).
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Fig. 3. Male gametophyte development and mutants affecting cell division, patterning and cellular
fate in Arabidopsis. During microgametogenesis, the haploid microspores undergo a highly
asymmetrical division, called pollen mitosis | (PMI), to produce a bicellular pollen within one
vegetative nucleus (blue) and one generative cell (orange). Later, the generative cell enters further
mitotic division, pollen mitosis Il (PMII) to make two sperm cells (red). Compiled from two sources:

Borg et al. 2009 and Twell 2011.

sidecar pollen is a male-specific mutant characterized by symmetrical division, followed by
asymmetric division of only one of the daughter cells to produce mature pollen with an
additional vegetative cell. gemini pollen1 displays a range of microspore division phenotypes
including equal, unequal, and partial division (Park et al 1998). GEM1 is identical to MOR1
(Whittington et al. 2001) which belongs to MAP215 family of microtubule-associated

proteins and plays a vital role in microspore polarity and cytokinesis by stimulating growth of
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the interface spindle and phragmoplast microtubule arrays (Twell at al. 2002). gem2 displays
the similar defects in establishing germ cell fate (Park et al. 2004). In the tio mutant,
microspores complete nuclear division but fail to complete cytokinesis resulting in
binucleate pollen grains. TIO is a plant homologue of a Ser/Thr protein kinase FUSED (Oh et
al. 2005), which is localised to the phragmoplast where it plays an essential role in
centrifugal cell plate expansion. Similar role to TIO could be linked with Kinesin-12A/12-B,
functional redundant microtubule motor kinesins, localised also to the phragmoplast midline
(Oh et al. 2010). TUBG1 and TUBG2, functionally redundant y-tubulins, are required for
spindle and phragmoplast organization in Arabidopsis microspores (Pastuglia et al. 2006).
Microtubules form a basket-like nuclear cap connected to nuclear envelope and cell cortex
and could be therefore involved in generating asymmetrical position of nucleus prior to
division.

After pollen mitosis |, the fate of vegetative nucleus is co-determined by RBP
(RETINOBLASTOMA-RELATED PROTEIN), the conserved repressor of cell proliferation. rbp
mutation results in hyper-proliferation of the vegetative cell and to a lesser extent the
germline, it perturbs cell differentiation to various degrees leading to pollen with four sperm
cells (Chen et al. 2009). Hyperproliferation in the absence of RBP is dependent on CDKA;1
activity since introduction of a cdka;1 mutant allele prevents cell proliferation in rbp pollen.
This places RBP repression of the E2F-DP pathway downstream of KRP-dependent CDKA;1
inhibition, so that both mechanisms may cooperate to enforce cell cycle exit that is
associated with commitment to vegetative cell fate (Fig 3, Fig. 4).

Considering the generative cell, the cell cycle is co-regulated by A-type cyclin-
dependent kinase (CDKA;1) mentioned above, which mutation results in retarded S-phase,
when germ cell enters mitosis during pollen germination (lwakawa et al. 2006, Nowack et al.
2006) and pollen tube growth (Aw et al. 2010). Disruption of the F-box-Like17 (FBL17) gene,
which is only transiently expressed in the male germ cell was shown to phenocopy the cdk;1
germ cell defect (Kim et al. 2008, Gusti et al. 2009). FBL17 normally targets the CDK
inhibitors KRP6 and KRP7 for proteasome-dependent degradation (Fig. 3, Fig. 4), enabling
the germ cell to progress through S-phase (Kim et al. 2008). Conversely, the persistence of
KRP6/7 in the vegetative cell is proposed to maintain the inhibition of CDKA activity and
vegetative cell cycle progression. Germline specific expression of FBL17 thus enables

differential control of the cell cycle in the germ and vegetative cells, effectively licensing
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germ cell for progression through S-phase (Twell 2011). Similarly, the proteasome-mediated
degradation of KRP6 by two RING-finger E3 ligases, RHF1a and RHF2a is required for regular
progression through both microspore and the subsequent germ cell mitotic cycle. RHF1a and
RHF2a are proposed to reduce the level of KRP6 accumulated during meiosis, thereby
preventing the inhibition of CDK activity in microspores and germ cells (Liu et al. 2008).

Recent analysis of Chromatin assembly Factor-1 (CAF-1) pathway mutants (fas1, fas2,
msil) indicates that chromatine integrity is also important for germ cell division. The
mutants display a range of phenotypes with some failing to divide at pollen mitosis I, some
failing to divide at pollen mitosis I, and some successfully dividing to produce tricellular
pollen. Surprisingly, pollen grains with single germ cell are able to fertilize either the egg or
central cell (Chen et al. 2008).

A single germ cell phenotype is also present in duo pollen (duo) mutants. In these
mutants, asymmetric microspore division at pollen mitosis | is completed, however, the
resulting germ cell fails to undergo cell division at pollen mitosis Il (Durbarry et al. 2005, Borg
et al. 2009), duol and duo2 pollen then contains only single germ cell and vegetative nucleus.
DUO1 encodes a novel R2R3 MYB transcription factor specifically expressed in germline cell
(Rotman et al. 2005, Singh et al. 2008). Unlike fbl17, cdk;1 and CAF-1 pathway-deficient
mutant pollen, duol pollen cannot fertilize. DUO3 is required for G2/M transition and for the
expression of a subset of DUO1 target genes. However, unlike DUO1, the requirement for
DUO3 in the germline during G2/M transition acts independently of CYCB1;1 (Brownfield et
al. 2009). The mechanism by which DUO3 influences the expression of a subset of DUO1
targets remains unknown, but it has been proposed that DUO1 and DUO3 may cooperate in
a transcriptional complex (Fig. 4).

Considering the sperm cells, their surface proteins are likely to play important roles in
the guidance, recognition, and/or fusion of gametes during double fertilization. This is the
case of Hap2 that has been identified in Arabidopsis (von Besser et al. 2006). It is a homolog
of GCS1 (Generative Cell-Specificl), encoding a gamete surface protein required for pollen
tube guidance and fertilization (Mori et al. 2006, von Besser et al 2006). In addition to the
gene expression, germline and sperm cell specific histon H3 variant H3.3 (MGH3) is
expressed under the control of DUO1 transcription factor. Histon H3.3 is incorporated into
chromatin and corregulates its rearrangement to support the global reprogramming events

(Twell 2011).
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Fig. 4. A model of male germline specification and maintenance. After PMI, the cell cycle inhibitors

Microspore

KRP6 abd KRP7 are present in both the germ and vegetative cells. Transient expression of FBL17 in the
germ cell, unlike in vegetative cell, leads to the degradation of these inhibitors, enabling CDKA
activation and entry into S-phase. Once S-phase has been completed, the DUO1-dependent activation
of G,/M phase regulators coupled to CDKA activation, promotes the germ cell to progress through the
G,/M checkpoint and enter mitosis. Ultimately, the co-ordinated association of these parallel
pathways results in a pair of fully differentiated sperm cells. Compiled from Borg et al. 2009, Berger

and Twell 2011, Twell 2011.

During the male gametophyte development, the structural and functional changes
are obviously connected to regulation of transcriptome dynamics. Pollen-specific MIKC class
of MADS-domain transcription factors play a significant role in such regulation. The
Arabidopsis MIKC genes can be subdivided into two groups whose members make functional
heterodimers; S-class involving AGL66, AGL67 and AGL104 etc., and P-class involving AGL30,
AGL 65 and AGL94 etc. AGL30, AGL65, AGL66, AGL94 and AGL104 are expressed specifically
in pollen while AGL18, AGL29, AGL49 and AGL84 appear to be enriched in pollen. Five
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heterodimers have been postulated to form in pollen: AGL65- AGL66, AGL65- AGL104,
AGL30- AGL66, AGL30- AGL104 and they may be considered as the major regulators of
pollen maturation programs (Verelst et al. 2007, Adamczyk and Fernandez 2009). It was
intriguing that even though more than 1,300 transcripts were misregulated in a triple
mutant pollen (agl65/66/104), the basic cellular organization and characteristic properties of
mature pollen and the ability to germinate and fertilize ovules appeared to be largely
unaffected (Verelst et al. 2007). It proves the great plasticity and potential dynamics in

pollen transcriptome.
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3. Male gametophyte transcriptomics

and microarray databases

3.1. Male gametophyte developmental transcriptomics

The male gametophyte represents a unique plant structure and plays an
unsubstitutable role during plant life cycle. This fact is reflected in various cellular events
including specific gene expression pattern. Despite the long-term knowledge of overlapping
gene expression during pollen development based on isozyme (Tanksley et al. 1981, Sari-
Gorla et al. 1986, Pedersen et al. 1987) and hybridization studies (Stinson et al. 1987,
Mascarenhas 1990), it was advanced microarray technology that helped to reveal the
transcriptional profile of male gametophyte in great detail (Becker et al. 2003, Honys and
Twell 2003, Pina 2005, Borges et al. 2008). For pollen developmental transcriptomics, it was
necessary to carry out gene expression profiling over the whole developmental process,
including microspores (UNM), bicellular pollen (BCP), tricellular pollen (TCP), and mature
pollen grain (MPG). Additionally, the potential to effectively isolate RNA from pollen
developmental stages, pollen tubes and sperm cells in required quantity and purity enabled
further extensive transcriptomic studies (Honys and Twell 2004, Borges et al. 2008, Wang et
al. 2008, Qin et al. 2009).

With the use of ATH1 Genome Array harbouring 22,591 genes that represent 80.7%
of estimated 28,000 protein coding genes in Arabidopsis, it was revealed that 13,977 genes
were actively transcribed providing significant and consistently positive expression signal in
at least one stage of male gametophyte development. It represented 61.9% genes on the
chip and suggested about 17,000 genes playing a role during pollen development. This huge
number was in accord with previous estimations. However, it evoked a surprising finding
that such specialized cell lineage with unique gametophytic function shared almost two
thirds of its genes involved in sporophytic regulation as well (Honys and Twell 2004). The
unigueness of the pollen transcriptome was dissected by analysing the frequencies of
representation of gene ontology categories. The most significant categories included general
and cell wall metabolism, cytoskeleton, signalling, transport and vesicle trafficking. It clearly
demonstrated the functional specialization of pollen and its predetermination to the pollen

tube growth (Honys and Twell 2003, Pina et al. 2005).
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Among all 13,977 genes expressed in pollen, 1,355 genes were considered pollen-
specific based on their expression at least one stage of pollen development and no
expression signal in any sporophytic tissue. The second key finding was the quantification of
the gradual decrease of number of expressed genes from early to late phase. In numbers,
UNM — BCP — TCP — MPG — PT4 — SPC stages expressed 11,565 — 11,909 — 8,788 — 7,235 —
6,148 — 5,801 genes, respectively (Fig. 5). The bulk of genes transcribed during early pollen
development might reflect the intense metabolism and cell growth of microspores and
young pollen. On the contrary, during pollen maturation, the steady decrease could be
connected to the cessation of metabolic activity towards mature pollen grain until pollen
germination and tube growth. However, the proportion of pollen-specific genes expressed
over male gametophyte development steadily increased as calculated 6.9% - 7.2% - 8.0% -
8.6% - 10.9% - 11.5% for each respective stage (Fig. 5). The rising proportion of pollen-
specific genes expressed in later pollen phase may be associated with desiccation and other

specific pollen functions during maturation (Honys and Twell 2004).
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Fig. 5. Transcriptome profile of total expressed genes during male gametophyte development with the
portion of specific genes active in each developmental stage. Columns from UNM to PT4 (4hr pollen
tubes) represent the transcriptome of vegetative nucleus while SPC represents the transcriptome of

sperm cells. Data from: Honys and Twell 2004, Borges et al. 2008, Wang et al 2008, Qin et al 2009.

Another striking phenomenon of pollen transcriptomic was a dramatic change of two
subsequent global developmental programmes between early and late stages. There is a
significant group of genes expressed specifically/predominantly in UNM and BCP with sharp

decrease in expression at later stages and vice versa. Basically, such reprogramming reflects
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the transition between BCP and TCP stages at the cellular level. When comparing UNM and
BCP by scatter plot analysis, relatively high correlation coefficient of R=0.96 indicated close
relation between these stages (Fig. 6). Similarly, the coefficient of R=0.86 between TCP and
MPG also suggested great similarity in terms of expression profile of respective genes. On
the contrary, BCP and TCP showed very poor correlation and even less similarity between
UNM and MPG (Fig 6). It simply reflected the change in “cell status” from relatively
undifferentiated and proliferating population of microspores into highly differentiated

mature pollen (Honys and Twell 2004).
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Fig. 6. Scatter-plots comparing gene expression between two respective developmental stages. (a)
UNM versus BCP, (b) BCP versus TCP, (c) TCP versus MPG, (d) UNM versus MPG. Honys and Twell,
2004.

Considering transcription factors (TF), ATH1 harbours 1,350 genes that represent
about 85% of total 1,594 annotated TF genes (Honys and Twell 2003). Of them, 608 (45%) TF
genes were expressed at least one stage of male gametophyte development and 54 genes
(15.7%) were pollen-specific. The family size also mattered rather than proportionally equal

representation of genes in each TF family. There was a sharp difference between over-
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represented families including p-coumarate 3-hydroxylase (C3H) family (67%), CAAT family
(64%), C2H2 zinc finger proteins (57%), WRKY family (53%), bZIP family (51%), TCP family
(50%), GRAS family (50%) and, in contrast, families under-represented such as AUX/IAA
(20%), HSF (33%), bHLH (34%), NAC (34%), AP2-EREBP (35%), HB (36%), R2R3-MYB (37%),
MADS (37%), and C2C2 zinc finger gene family (37%).

Besides pollen (vegetative cell) transcriptome, the data from isolated Arabidopsis
sperm cells are also available (Borges et al. 2008). With the use of ATH1 Genome arrays
(22,392), the amount of 5,829 (27%) gene transcripts was detected to be expressed in sperm
cells. The functional classification of genes revealed that most represented genes were
associated with DNA repair, cell cycle progression and ubiquitin-meditated proteolysis.
Moreover, significant presence of components involved in small RNA metabolism and DNA
methylation suggested their convincing role in epigenetic regulation. It may not be surprising
that the vast majority of genes (3,813) expressed in sperm cells were also detected in pollen
vegetative cell. However, the overlap between sperm cells and seedlings comprised 4,757
genes, representing almost the whole sperm-cell transcriptome with the half showing
predominant expression in sperm cells. In relation to transcriptional regulation, the TF
families were rather weakly represented with the exception for MYB-type TF family with
relatively high expression of their members in sperm cells. Families of homeobox and bHLH
genes, which were otherwise very abundantly expressed in sporophyte, were represented
only by one or few genes in sperm cells, respectively. Focusing on transcription factors
managing specific sperm cell functions, one candidate (At4g35700) could be traced into zinc
finger C2H2 family, which was specifically expressed just in sperm cells and at the highest
expression level of all TF genes on top of that, and possibly one member (at2g42300) of
bHLH family being expressed specifically in male gametophyte and was not detected in

pollen vegetative cell.

3.2. Microarray databases

The gene expression in its specific combinatory pattern and dynamics during whole
development represents the essential background of the life with direct connection to
structural and physiological behaviour of the organism. Therefore the study of transcriptome
as a spatial and temporal result of inner and outer stimuli is of the great interest. In past

decades, number of techniques have been used to discover the secret of transcriptional
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activity using Nothern blot analysis, quantitative reverse transcription-PCR, cDNA library
screening, serial analysis of gene expression, manual/mechanical spotting of probes on
nylon/glass macro/microarrays, etc. (Schena et al. 1995, Velculescu et al.1995, Lockhart et al.
1996, Lipshutz et al. 1999). Those approaches were able to detect obviously very limited
number of genes. It was the introduction of sophisticated high-throughput microarray
technologies that significantly supported the parallel large-scale transcriptome analyses.
Nowadays, microarray ATH1 GeneChip developed by Affymetrix covering 76% of Arabidopsis
thaliana genes is considered as a standard tool in genome wide transcriptomic studies in
plants.

Not surprisingly, the technological reliability, reproducibility, price availability and last
but not least the experimental requirement have contributed to the massive production of
transcriptomic data. Along with continuous data accumulation and the customers’ need for
the access to the gene expression information, numerous databases have been established.
Currently, there are dozens of different databases covering different species, experimental
conditions, and developmental stages which may result in navigation difficulties. Over last
years, many articles have been published to deal with microarray databases, providing
relevant introduction and help researchers direct to resources and tools they require.
Basically, there are two types of microarray databases; one serves as a publicly available
data repository and the others provide some additional data analysis tools. In both cases,
experimental data comes directly from Affymetrix Service via Nottingham Arabidopsis Stock
Centre (NASC) or from extensive bioinformatic projects run by large institutions like
European Bioinformatics Institute (EMBL-EBI) or National Centre for Biotechnology
Information (NCBI) as the largest data repositories. Alternatively data originates from
numerous laboratories’ projects dealing with transcriptomic analyses. Bioinformatic tools
associated with most databases represent the main instrument to effectively select and
analyse data of interest. Essentially, such facilities make the difference among each database
and may attract different scientific questions. To mention several key data mining tools, it
would include normalization and data filtering tools, global statistical data analysis, analysis
of co-regulated genes, and hierarchical or K-means clustering tools. Some specialized
databases offer visualizing tools, promoter element detection or potential upstream
elements. Other helpful possibilities represent the selection from various experimental

setups including physiological and stress conditions, different developmental stages and
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tissue/cell lines. Moreover, most databases permit data download, either for free or charged,
for further data processing if needed. Because of the diverse data sources and experimental
conditions, the large number of databases is strictly MIAME-compliant, asking for the
Minimum Information About Microarray Experiment (MIAME) to enable comparability
across numerous datasets. Further criteria also comprise the assessment of expression data
quality (QC, Quality Control) to evaluate the relevance of providing data. Ongoing microarray
experiments and continuous generation of transcriptomic data have led to establish various
microarray databases. Many applications are being supplemented with more specialized
products offering various visualization and data mining tools to fulfil growing demands of
researchers. It was one aim of this Ph.D. thesis to overview the most frequent databases
(Honys et al. 2008) and setup a new portal using own expressional data including pollen

transcriptome as described in Results of the thesis.
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4. Aims of the study

The study of male gametophyte represents a very interesting field in the plant
science for the uniqueness of the object of interest including structural features (cell-in-cell
organization, cell wall composition) and functional properties (unique transcriptional pattern,
posttranscriptional regulation, tip growth) not speaking about amazing cellular and life-span
reduction during the gametophyte evolution in plants. Due to massive use of microarray
technologies, 608 TF genes were identified to be expressed during pollen development and
some of them have been functionally characterized. However, the complete understanding
of the whole regulatory network is still rather limited.

Hence, the main goal of this Ph.D. thesis was to employ large-scale screening of T-
DNA mutant lines in specific transcription factors to bona fide determine their importance in
pollen development. Therefore this work intended to provide knowledge on TF mutant
phenotype in terms of their structural and functional defects as a basement for further
detailed studies of their regulatory roles. In addition, this thesis also reviewed the male
gametophyte development on the whole and reflected gene expression data and

transcriptomic databases. The particular aims were:

(1) To summarise the male gametophyte development with the respect to the structure and
function of pollen grain and growing pollen tube, mutants affecting male gametophyte

development and pollen transcriptomics.

(2) To select TF genes with either specific or enriched expression pattern during pollen
development based on microarray data with the special focus on early stages of male
gametophyte development and to perform large-scale screening of T-DNA mutant lines in
selected TF genes and their evaluation regarding their effect on male gametophyte

development.
(3) To participate on the characterization of a candidate gene AtbZIP34 selected from

previous large-scale screening as a case study including structural and functional analysis of

the mutant.
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(4) To identify promoter sequences driving gene expression in early stages of pollen

development and their use as a molecular tool for the manipulation of gene expression.

(5) To build a gene expression database based on microarray data and to make it public to a
broad scientific community in user-friendly and graphic environment.
Moreover, to compile and compare available transcriptomic databases world-wide to help

potential users to target their questions on particular gene expression.
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6. Results

This chapter considers four author’s research papers on wide-scale screening of T-
DNA lines, AtbZIP34 TF functional analysis, identification of microspore-active promoters,
and building the aGFP database, only (excluding two book chapters). Since all results are
fully presented in each of respective papers, this part is only to summarise them in a united
manner.
Aiming to identify TFs affecting male gametophyte development, we screened 74 T-
DNA insertion lines for pollen phenotypic defects. We focused on structural and functional
defects occurring during pollen development using bright field and epifluorescence
microscopy. In comparison to the wild-type phenotype, five complex disorder classes were
observed. Those included (A) pollen abortion, (B) presence of cytoplasmic inclusions, (C)
pollen grain size and cell wall structure, (D) cell cycle defects, and (E) MGU (male germ unit)
organization. However, the precise phenotype analyses have led to refined classification of
above dysfunctions into tens categories: A: (1) abortion; B: (2) inclusions; C: (3) small grain,
(4) oval grain, (5) deformed cell wall; D: (6) one-celled pollen, (7) two-celled pollen; E: (8)
eccentric MGU, (9) separated MGU, and (10) linear MGU. We mostly observed abnormalities
connected to cytoskeletal organization and function leading to the defective arrangement of
MGUs with their eccentric, separated or linear position in the pollen grain unlike their
characteristic central arrangement in wild-type pollen. Because of the sole positional
variation we described those phenotypes simply as misarranged MGU. Other classes of
mutations were likely to affect cell cycle and cell division. Namely, PMI defects resulted in
one-celled pollen and/or PMII defects resulted in two-celled pollen with one vegetative
nucleus and one generative cell. Cytoplasmic inclusions represented more specific class of
phenotype defects. The most serious and complex phenotypic defect(s) led to a complete
cell abortion with squashed pollen wall. Considering the pollen shape, we observed unusual
pollen grain size and shape such as small and oval pollen grains. However, these phenotypic
defects were rare. Only one insertion line produced pollen with cell wall deformation with
rough cell surface. Among 61 confirmed lines, about a half (29 lines) showed strong
phenotypic changes (i.e. 225% aberrant pollen). Yet only few lines producing heavily
disturbed pollen grains were observed reaching very high penetrance. The most striking
phenotypes were observed in lines of SALK_140819 with 100% abnormal pollen (At2g20400;
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G2-like), 80-85% in SALK_018864 (At2g42380; bzIP), 70-75% in SALK_084050 (At3g15740;
C3H), 70-75% in SALK_010704 (At5g54470; C2C2-CO-like), and 50-55% in SALK_090677
(At4g05330; C2C2) (Table 1).

AGI T-DNA line TF family mutant phenotype
At2g20400 SALK_140819 G2-like 100%
At2g42380 SALK_018864 bzIP 80-85%
At3g15740 SALK_084050 C3H 70-75%
At5g54470 SALK_010704 C2C2-CO-like 70-75%
At4g05330 SALK_090677 c2c2 50-55%

Table 1. The list of the most affected lines by T-DNA insert in pollen development

But generally, in the population of homozygous plants we mostly identified
remarkable proportion of pollen with wild-type or mild phenotype defects counting the
average penetrance in between 10-30%. Several T-DNA lines with strong phenotype defects
were further genetically tested using backcross analysis. Out of eight selected lines, six ones
segregated close to the Mendelian 1:1 ratio. Reminding two lines performed heavy
segregation distortion of 1:0.04 (SALK_002235) and 1:0.39 (SALK_043690) indicating the
significant role of the TFs in male gametophyte development.

Our wide-screening led to an evaluation of selected TF mutant lines in terms of
impact on pollen development and hence served as a good information basement for further
studies. Based on this fact, we have selected a few lines with considerable impact on male
gametophyte development which have been analysed in our laboratory. One of them was
the transcription factor AtbZIP34, published by our laboratory (Gibalova et al. 2009).
AtbZIP34 belongs to a large family (75 annotated genes) of bZIP transcription factors whose
members have been shown to be involved in male gametophyte development (lven et al.
2010). AtbZIP34 was confirmed to be specifically and increasingly expressed during pollen
maturation both by RT-PCR and promoter:GUS analyses, that were in agreement with
previously published microarray data (Honys and Twell 2004). Pollen grains of mutant
atbzip34 plants showed several phenotypic features including 15% aborted pollen and 27%
malformed/misarranged MGU. In addition, the typical sign was the presence of lipid/oil
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bodies. Electron microscopy confirmed the abundance of such inclusions in mutant pollen
accompanied by under-developed ER and vacuoles increased in number and size. Farther
observation revealed abnormal exine patterning with collapsed baculae and tectae and with
areas of extra material deposition plus characteristic wrinkled intine detached from the
outer nexine layer. Furthermore, its dysfunction was significant in progamic phase as well, as
demonstrated by in vitro/in vivo pollen tube growth and segregation ratio distortion. Pollen
bearing mutant allele showed weaker germination (85% reduction compared to wild-type)
and slower pollen tube growth rate. According to microarray experiment, AtbZIP34 affected
expression of genes involved in various metabolic pathways besides other functions. Over
1,300 genes were upregulated and, in contrast, over 800 genes were downregulated; the
later subset included most significant changes in functional categories representing
transcriptome, transport, metabolism and protein fate. Among the strongest downregulated
genes belonged those encoding proteins involved in lipid catabolism and two lipid transfer
proteins, and ABC transporter. All those findings indicated to the missing role of AtbZIP34 TF
during male gametophyte development and therefore its unsubstitutable role in the
regulatory network. Moreover, it is the first up to date described factor being involved in
both sporophytic and gametophytic regulation.

Manipulation of gene expression during pollen development using differently active
promotors may serve as a convenient tool for functional analysis. For such need, Lat52 as
well characterised promoter active in late pollen development and in progamic phase has
been a favourite tool for decades. In addition to Lat52 isolated from tomato, LGC1 promoter
was characterized in lily generative cell (Singh et al. 2003, Singh and Bhalla 2008). However,
promoters active in early pollen development were mostly missing. Therefore we focused on
the identification of promoters driving expression in early stages and then isolated three
microspore-active promoters enabling the spatially and temporally controlled expression
pattern. Based on previous transcriptomic data from four pollen developmental stages
(UNM, BCP, TCP, MPG) and several sporophytic tissues, a group of seven genes was selected
exhibiting strict expression patterns only at early stages of male gametophyte development.
Those candidate genes were verified by RT-PCR analysis but only three of them (At5g59040,
At5g46795, and At4g26440) passed strict selective criteria on specific early expression and
were named MSP1, MSP2, and MSP3, respectively. The activity of those promoters was

tested using GUS:GFP markers. MSP1 showed earlier signal in microspores followed by a
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sharp decrease in mature flowers while MSP2 and MSP3 initiated expression in microspores
but accumulated in mature pollen as well. To evaluate MSP promoters as a suitable tool for
early pollen expression in planta, two constructs for functional complementation using
MSP1 and MSP2 promoters and T/IO coding sequence were prepared. tio heterozygous
plants produced 50% aberrant pollen and MSP1 construct were able to significantly (more
than MSP2 construct) restore the phenotype confirming the usability of MSP1 promoter for
targeted manipulation of gene expression at early pollen development.

With the increasing demand for transcriptomic studies, loads of expression data have
been generated by number of research groups round the world including our and
colaborative laboratory as published previously (Honys and Twell, 2003, 2004). These
datasets included unique expression profiles of four pollen successive stages (UNM, BCP,
TCP, MPG) of male gametophyte development plus numerous sporophytic tissues. To access
those data to wide scientific community and provide it with an alternative web-based
toolbox, we established a database named Arabidopsis Gene Family Profiler (aGFP). The
database works with transcriptomic datasets from NASC Array and AtGenExpress and
presents them in user friendly graphic environment introducing a unique virtual plant
concept with coloured organs and tissues in a scale reflecting the level of gene expression.
Furthermore, the data can be searched according to AGI codes, BAC loci, gene names, gene
families or as custom genesets with the further possibility of keyword search. The user can
also choose from MAS 4.0 or MAS 5.0 normalised datasets and from NASC
Array/AtGenExpressed source to name some options. aGFP database covers only data from
Affymetrix ATH1 arrays using wild-type Arabidopsis of different ecotypes grown under

normal physiological (AtGenExpressed) or various (NASCArrays) conditions.
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7. Discussion

The wide-screen analysis of T-DNA insertional lines brought in a sense surprising
result. The first was, despite of numerous 21 TF families represented by 61 confirmed
insertion lines, relatively small variance among individual pollen mutant phenotypes. Such
limited portfolio of pollen defects may have seemed unexpected at this wide-scale screening
but one should regard the role of transcription factors in complex networks when different
regulators can trigger various biochemical processes that finally share and often overlap
similar cellular events and functions like cytoskeleton organization, cell cycle, transport, cell
wall metabolism etc. Such pleiotropic activity, but overlapping when comparing different
mutants, has repeatedly been reported (Twell et al. 2006, Verelst et al. 2007, Gibalova et al.
2009). Second, we could not detect any significant bias towards any particular phenotypic
category when comparing early and late TFs. Moreover, there were no preferences among
individual TF families in disrupting cellular events. The common cellular disruption over all TF
families affected MGU position resulted into three phenotypic defects: eccentric, separated
or linear MGU. Third, among 61 verified lines we did not find many lines with considerably
high penetrance with the exception of four lines reaching over 70% of aberrant pollen. On
the contrary, the vast majority of lines showed wild-type-like appearance or mild phenotype
defects in a range of 10-30%. Many authors suggested gametophytic mutations as
pleiotropic, incompletely penetrant and displaying variable expressivity due to functional
redundancy (Feldmann et al. 1997, Bonhomme et al. 1998, Grini et al. 1999, Drews and
Yadegari 2002, Verelst et al. 2007) or due to a conditional-based phenotype. This
phenomenon was especially apparent among transcription factors (Blanc et al. 2000, Verelst
et al. 2007). Indeed, the vast majority of several hundred knockouts in Arabidopsis did not
give rise to visible, directly informative phenotypes (Bouché and Bouchez 2001). However,
out of six selected T-DNA lines for further genetic analysis using backcross, two lines
performed heavy segregation distortion counting 1:0.04 (SALK_002235) and 1:0.39
(SALK_043690) in comparison to the Mendelian 1:1 segregation. It is likely that the
corresponding genes (At3g20910, CCAAT-HAP and At5g54680, bHLH, respectively) play
significant regulatory role in the male gametophyte development.

Further study on one selected transcription factor, AtbZIP34, revealed characteristic
phenotypic and genetic transmission defects providing several lines of evidence that support
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both sporophytic and gametophytic roles of this factor in male gametophyte development
and function (Gibalova et al. 2009). Various phenotypic features including cell wall
organization, changes in endomembrane system, vacuole and vesicle content in addition to
handicapped pollen tube growth, were enlightened by microarray analyses. As a result, we
identified over 1,300 genes up regulated and over 800 genes down regulated which
disclosed the key position of the AtbZIP34 factor in male gametophyte regulatory network.
For example, the abnormal presence of lipid/oil bodies in mutant pollen nicely correlated
with significant down regulation of genes encoding proteins involved in lipid catabolism, lipid
transfer and ABC transporter. Similar links could be associated to the cell wall biogenesis as
the mutant pollen sustained in the structure of both intone (gametophytic management)
and exile wall patterning (sporophytic management). The further analysis of downstream
regulated genes including the regulator MYB97 may be promising to reveal new connections
in the cellular network that control male gametophyte development.

For the functional analysis of transcription factors, manipulated gene expression
using a set of promoters with various spatial and temporary activities is a very useful
approach. Yet only two Arabidopsis promoters (BCP1 and AtSTP2) were known to be active
in microspores (Xu et al. 1995, Truernit et al. 1999). However, BCP1 also showed the
expression in tapetum and AtSTP2 was active from the tetrad stage. Similarly for other
species (rapeseed, potato), microspore-active promoters have been identified but
functionally overlapping to other stages (Fourgoux-Nicol et al. 1999, Maddison et al. 1999)
with the exception for tobacco MTM19, whose promoter is highly microspore-specific
(Clusters et al. 1997). Because of the absence of such tool for an early expression in
Arabidopsis pollen development, three early active promoters were selected, isolated and
verified by RT-PCR and GUS expression. Moreover, two of them, MSP1 and MSP2, were
functionally confirmed by complementation analysis using MSP promoter and TIO coding
sequence. Interestingly, the expression in early stages of male gametophyte development
was steadily accompanied with the expression in tapetum, which tightly surrounds
developing microspores in anther microsporangia. In this regard, the co-regulation of gene
expression in both microspores and tapetum at early stages of anther development is not
surprising since they have the same origin in archesporic tissue, tapetal inicials develop side
by side with pollen mother cells the microsporogenesis itself is vitally dependent on

secretory activity of tapetal cells.
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Since the massive use of microarray experiments, the wealth of transcriptomic
datasets have been widely expanding and it has been naturally followed by the introduction
of transcriptomic databases collecting such data and presenting them in various manners
either as a repository or with a web-based tools (Honys et al. 2008). aGFP database launched
by our lab provides data from AtGenExpress and NASCArrays in easy intuitive graphic
environment, which makes it unigue among the others. The selection from those data
source provides researchers transcriptomic data from Columbia-O of numerous
developmental stages grown under comparable conditions (AtGenExpress) and data coming
from different ecotypes grown under various conditions (NASCArrays). Furthermore, none of
the databases had till then offered instruments such as profiling according to gene families.
In addition, interactive “virtual plant” represents another innovation helping users simply
check transcriptomic data. The option between MAS 4.0 or MAS 5.0 normalized data are
also rare among other databases round the world, which enables direct comparison of the
influence of the detection algorithm. Empirical MAS 4.0, unlike the statistical MAS 5.0, is
thought to yield more false-positive calls, our analysis of four pollen developmental stages
showed that MAS 5.0 detection algorithm tended to eliminate a number of genes identified
by MAS 4.0 as expressed genes and which were experimentally verified to be so, highlighting
the extra value of MAS 4.0 detection algorithm. The uses can also switch between virtual
plant or simple bar chart (standard or log-scaled) or tabulated display. The database is freely
available on the internet and hopefully providing quick and easy steps to mine

transcriptomic data as needed.
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Honys D, Renak D, Twell D.
Male gametophyte development and function.
Global Science Books, pp.76-87, 2007.

Abstract:

Male gametophyte development in higher plants is a complex process that requires the coordinated
participation of various cell and tissue types and their associated specific gene expression patterns.
The male gametophytic life cycle can be divided into a developmental phase leading to the formation
of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains
on the stigma surface and ending at double fertilisation. Pollen ontogeny is also an excellent model in
which to dissect the cellular networks that control cell growth, polarity, cellular differentiation and
cell signaling. Here we present an overview of important cellular processes in male gametophyte
development and recent advances in genetics and genomic approaches that are advancing the field
significantly. Genetic approaches have identified a growing number of gametophytic mutants
affecting discrete steps during the developmental or progamic phases that are now beginning to
uncover some of the key molecular processes involved. With recent technological advances pollen
transcriptomic studies now provide the first genome-wide view of male reproductive cell
development in Arabidopsis. These studies reveal at least two successive global gene expression
programs and the identity of a large number of male gametophyte-specific genes and putative
transcriptional regulators. Transcriptome analysis has revealed a striking overrepresentation of cell
wall metabolism, cytoskeleton and signaling genes in preparation for the progamic phase. This
quantum leap in gene-centered knowledge highlights the functional specialization of this pathway
and offers many new opportunities for the dissection of cellular processes that control male
reproductive success.

Abstrakt:

Vyvoj samciho gametofytu u vyssich rostlin je slozZity vyvojovy proces, ktery vyzaduje koordinovanou
Ucast rozlicnych bunék a pletiv a jejich specifickou genovou expresi. Zivotni cyklus vyvoje saméiho
gametofytu mize byt rozdélen do nékolika vyvojovych fazi vedoucich k produkci zralych pylovych zrn
a k progamické fazi, ktera za¢ind po dopadu pylového zrna na bliznu a jeho kli¢eni a rdst v pylovou
lacku zajistujici dvojité oplozeni samiciho vajicka. Vyvoj pylu je také vyjimecnym modelem
umoziujicim studium kontroly bunécéného rlstu, polarity, diferenciace a bunécné signalizace. Toto
review se zabyva duleZitymi Zivotnimi procesy béhem vyvoje samciho gametofytu a pokroky v
genetice a genomice na tomto poli. Bylo identifikovdno mnozstvi gametofytickych mutaci
postihujicich jednotlivé faze vyvoje pylu a pylové lacky, které jsou postupné identifikovany na
molekularni drovni. S vyuZitim nejnovéjsich technologickych pristupl, transkriptomika pylu nyni
poskytuje prvni uceleny pohled v Sifi celého genomu na vyvoji samcéiho gametofytu u Arabidopsis.
Tato studia odhalila pfinejmensim dva ndasledné expresni vyvojové programy a velké mnozstvi pylové
specifickych gen( a predpokladanych transkripénich reguldtor(. Transkriptomicka studia ukazala
prekvapujici vysokou expresi genl Ucastnicich se metabolismu bunééné stény, cytoskeletu a
signalizace, jakoZzto pfiprava na pozdéjsi progamickou fazi. Tyto poznatky ukazuji na vysokou funkéni
specializaci tohoto vyvoje a nabizi mnoho novych prileZitosti ke studiu bunécnych procesq, které ridi
samci reprodukéni Uspésnost.



Renak D, Duplakova N, Honys D.

Wide-scale screening of T-DNA lines for transcription factor genes affecting male
gametophyte development in Arabidopsis.

Plant Sex Rep, (2011), resubmitted.

Abstract:

Male gametophyte development leading to the formation of a mature pollen grain is precisely
controlled at various levels during its whole progression. Transcriptomic studies exploiting genome-
wide microarray technologies revealed the uniqueness of pollen transcriptome and the dynamics of
early and late successive global gene expression programs. However, the knowledge of transcription
regulation is still very limited. In this study, we focused on the identification of pollen-expressed
transcription factor (TF) genes involved in the regulation of male gametophyte development. To
achieve this, reverse genetic approach was used. 74 T-DNA insertion lines were screened
representing 49 genes of 21 TF families active in either early or late pollen development. In the
screen, ten phenotype categories were distinguished affecting various structural or functional
aspects including pollen abortion, presence of inclusions, variable pollen grain size, disrupted cell
wall structure, cell cycle defects and male germ unit organization. Thirteen lines were not confirmed
to contain the T-DNA insertion. Among 61 confirmed lines, about a half (29 lines) showed strong
phenotypic changes (i.e. 225% aberrant pollen) including four lines producing remarkable high
proportion (70-100%) of disturbed pollen. However, remaining 32 lines exhibited mild defects or
resembled wild type appearance. There was no significant bias towards any phenotype category
amongst early and late TF genes and interestingly within individual TF families. Presented results
have a potential to serve as a basal information resource for future research on the importance of
respective TFs in male gametophyte development.

Abstrakt:

Vyvoj samciho gametofytu vedouci k produkci zralych pylovych zrn je precizné regulovan na rlznych
urovnich béhem celého vyvoje. Transkriptomicka studia odhalila jedinec¢nost pylové genové exprese
a jeji dynamiku béhem raného i pozdniho vyvojového programu. Prese vSechno, znalost regulace
transkripce je stale velmi omezené. V této studii se zaméfujeme na identifikaci pylové exprimovanych
transkrip¢nich faktord, které hraji dlohu v regulaci vyvoje samciho gametofytu. K tomuto ucelu byl
vyuZzit pristup reverzni genetiky. Bylo analyzovano 74 T-DNA linii odpovidajici 49 sledovanym genlim z
21 rodin transkripénich faktord aktivnich jak v ranych tak pozdnich stadiich vyvoje pylu. Bylo
detekovano 10 fenotypovych kategorii vyznacujicimi se strukturnimi i funkénimi poruchami vyvoje,
jako jsou: aborce, ptritomnost inkluzi, riznd velikost pylovych zrn, poskozend struktura bunééné
stény, defekty v bunééném cyklu a organizaci vegetativniho jadra a spermatickych bunék. U 13 linii
nebyl T-DNA inzert detekovan. Mezi 61 potvrzenymi liniemi asi polovina (29 linii) ukazala vyznamné
fenotypové zmény (tj. 225% poskozeného pylu) véetné ctyrt linii vyznacujicimi se vysokou produkci
(70-100%) poskozeného pylu. Nicméné zbyvajici 32 linie ukazovaly jen mirné poskozeny pyl nebo
vzhledové pripominajici pyl divokych rostlin. Nebyla shledana Zadna souvislost mezi fenotypovou
kategorii a mutanty gend ranych a pozdnich TF ani genovou rodinou TF. Pfedkladané vysledky prace
mohou byt dobrfe vyuzity jako informacni zdkladna k dalSim detailnim analyzdm vyznamnosti
vybranych TF ve vyvoji samc¢iho gametofytu.



Gibalova A, Renak D, Matczuk K, Duplakova N, Chab D, Twell D, Honys D.

AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several
metabolic pathways in developing pollen.

Plant Mol Biol (2009) 70: 581-601.

Abstract:

Sexual plant reproduction depends on the production and differentiation of functional gametes by
the haploid gametophyte generation. Currently, we have a limited understanding of the regulatory
mechanisms that have evolved to specify the gametophytic developmental programs. To unravel
such mechanisms, it is necessary to identify transcription factors (TF) that are part of such haploid
regulatory networks. Here we focus on bZIP TFs that have critical roles in plants, animals and other
kingdoms. We report the functional characterization of Arabidopsis thaliana AtbZIP34 that is
expressed in both gametophytic and surrounding sporophytic tissues during flower development. T-
DNA insertion mutants in AtbZIP34 show pollen morphological defects that result in reduced pollen
germination efficiency and slower pollen tube growth both in vitro and in vivo. Light and
fluorescence microscopy revealed misshapen and misplaced nuclei with large lipid inclusions in the
cytoplasm of atbzip34 pollen. Scanning and transmission electron microscopy revealed defects in
exine shape and micropatterning and a reduced endomembrane system. Several lines of evidence,
including the AtbZIP34 expression pattern and the phenotypic defects observed, suggest a complex
role in male reproductive development that involves a sporophytic role in exine patterning, and a
sporophytic and/or gametophytic mode of action of AtbZIP34 in several metabolic pathways,
namely regulation of lipid metabolism and/or cellular transport.

Abstrakt:

Sexualni reprodukce rostlin zavisi na produkci a diferenciaci funkénich gamet produkovanych
haploidni gametofytickou generaci. Poznani regula¢nich mechanismu specifického gametofytického
programu je v soucasné dobé stéle omezené. Pro odhaleni téchto mechanisml je nezbytna
identifikace transkripénich faktord (TF), které jsou soucasti regulacni sité. V této praci jsme se
zaméfili na bZIP TF, ktery hraje vyznamnou ulohu ve vyvoji rostlin, Zivocichl i dalSich fiSich. V této
praci predkladame vysledky funkéni charakterizace genu AtbZIP34 u Arabidopsis, ktery je exprimovan
jak v gametofytu tak i okolnich sporofytickych pletivech béhem vyvoje kvétu. T-DNA inzerce v genu
AtbZIP34 zplsobuje morfologické defekty ve vyvoji pylu, které zapficinuji snizenou klicivost pylu a
omezenou rychlost rastu pylovych lacek jak v in vitro tak in vivo podminkach. Svételna i fluorescencni
mikroskopie odhalila zmény v organizaci vegetativniho jadra a spermatickych bunék a velké lipidové
inkluze v cytoplazmé mutantniho pylu. Elektronova mikroskopie navic odhalila zmény ve stavbé exiny
a redukci endomembranového systému. Nékolik takovych dikazl véetné prlibéhu exprese genu
AtbZIP34 a fenotypovych defektl ukazuje na sloZitou roli daného faktoru v samcéim reprodukénim
vyvoji, jak v Uloze sporofytu pfi tvorbé exiny tak i kordinovanou ulohu sporofytu a gametofytu v
nékolika metabolickych drahach jako je regulace lipidového metabolismu a/nebo bunééného
transportu.



Honys D, Oh SA, Refidk D, Donders M, Solcova B, Johnson JA, Boudova R, Twell D.
Identification of microspore-active promoters that allow targeted manipulation of gene
expression at early stages of microgametogenesis in Arabidopsis.

BMC Plant Biol (2006) 6: 31-39.

Abstract:

Background: The effective functional analysis of male gametophyte development requires new tools
enabling the spatially and temporally controlled expression of both marker genes and modified
genes of interest. In particular, promoters driving expression at earlier developmental stages
including microspores are required.

Results: Transcriptomic datasets covering four progressive stages of male gametophyte
development in Arabidopsis were used to select candidate genes showing early expression profiles
that were male gametophyte-specific. Promoter-GUS reporter analysis of candidate genes identified
three promoters (MSP1, MSP2, and MSP3) that are active in microspores and are otherwise specific
to the male gametophyte and tapetum. The MSP1 and MSP2 promoters were used to successfully
complement and restore the male transmission of the gametophytic two-in-one (tio) mutant that is
cytokinesis-defective at first microspore division.

Conclusion: We demonstrate the effective application of MSP promoters as tools that can be used
to elucidate gametophytic gene functions in microspores in a male-specific manner.

Abstrakt:

Pozadi: Efektivni funkcni analyza vyvoje samciho gametofytu poZaduje nové nastroje umoznujici
mistné i Casové specifickou genovou expresi jak markerovych gen(, tak vlastnich studovanych gent.
Pro tyto Ucely je nezbytna zejména exprese fizend promotory aktivnimi v ranych vyvojovych stadiich.

Vysledky: Byla vyuzita transkriptomicka database zahrnujici Ctyfi vyvojova stadia vyvoje samciho
gametofytu Arabidopsis k vybéru kandidatnich gen( s ranou a pylové specifickou expresi. S pomoci
promotor-GUS reportérového systemu byly identifikovany tfi promotory (MSP1, MSP2, and MSP3)
aktivni ve stadiu mikrospory ale i tapeta. Promotory MSP1 a MSP2 byly uUspésné vyuZity v
komplementaci a obnové transmise gamet prostfednictvim two-in-one (tio) mutanta, ktery je
defektni v prvnim déleni mikrospory.

Zavér: Prokazali jsme efektivni aplikaci MSP promotort jakoZto nastrojll, které mohou byt pouZity k
analyzam gametofytickych genovych funkci ve stadiu mikrospory pylové specifickym zpGsobem.
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Arabidopsis Gene Family Profiler (aGFP) — user-oriented transcriptomic database with
easy-to-se graphic interface.

BMC Plant Biol (2007) 7: 39-46.

Abstract:

Background: Microarray technologies now belong to the standard functional genomics toolbox and
have undergone massive development leading to increased genome coverage, accuracy and
reliability. The number of experiments exploiting microarray technology has markedly increased in
recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are
being introduced to simplify their use. Global statistical data analysis methods contribute to the
development of overall concepts about gene expression patterns and to query and compose
working hypotheses. More recently, these applications are being supplemented with more
specialized products offering visualization and specific data mining tools. We present a curated gene
family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; http://
agfp.ueb.cas.cz), which gives the user access to a large collection of normalised Affymetrix ATH1
microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic
datasets for various tissues at different developmental stages of wild type plants gathered from
nearly 350 gene chips.

Results: The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an
easily accessible resource for expression data of single genes, pre-defined gene families or custom
gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a
user-friendly web interface using both graphic and text output. Data are stored at the MySQL server
and individual queries are created in PHP script. The most distinguishable features of Arabidopsis
Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS
algorithm and calculation of model-based gene-expression values based on the Perfect Match-only
model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5
algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and
developmental expression profiles of both gene families and individual genes.

Conclusion: Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental
transcriptomic data starting with simple global queries that can be expanded and further refined to
visualize comparative and highly selective gene expression profiles.

Abstrakt:

Pozadi: DNA-Cipové technologie nyni patfi ke standardnim genomickym nastrojim a jejich masivni
rozvoj vedl ke zvyseni genomového pokryti, presnosti a spolehlivosti. PoCet experiment( vyuZivajicich
téchto technologii v poslednich letech vyznamné vzrista. Soucasné s timto rozvojem stoupa mnozstvi
on-line nastroja zjednodusujicich jejich nasledné vyuziti. Globalni statistické analyzy dat pfispivaji k
rozvoji celkovych pohledi na strukturu genové exprese a tvorbu pracovnich hypotéz. V posledni dobé
jsou tyto aplikace poskytovany se specializovanymi produkty nabizejicimi vizualizacni a jiné ndstroje
ke zpracovani dat. Nabizime databazi orientovanou na transkripci genovych rodin Arabidopsis Gene
Family Profiler (aGFP; http:// agfp.ueb.cas.cz ), ktera nabizi uZivateli pfistup k Siroké shirce



normalizovanych dat z Affymetrix ATH1. Databaze nabizi data z NASC Array a AtGenExpress zdroju
pokryvajicich rlizna vyvojova stadia divokych rostlin pochazejicich z témér 350 experimentd.

Vysledky: database aGFP byla designovana jako jednoduse ovladatelnd databaze se snadnym
pristupem k datlim jednotlivych gen(, genovych rodin nebo zvolené skupiny gen(i s moZnosti hledani
podle klicovych slov. Arabidopsis Gene Family Profiler nabizi uZivatelsky pFistupné rozhrani s
grafickym | textovym vystupem. Data jsou uloZzena na MySQL server a jednotlivé dotazy jsou tvoreny
v PHP skriptu. NejcharakteristictéjSimi rysy Arabidopsis Gene Family Profiler database jsou: 1)
presentace normalizovanych dat (Affymetrix MAS algoritmus a vypocet genovych expresnich dat
podle Perfect Match-only model u); 2) vybér mezi dvéma odliSnymi normalizovanymi algoritmy
(Affymetrix MAS4 or MAS5); 3) intuitivni rozhrani; 4) interaktivni virtudlni rostlina znazornujici mistné
a vyvojové expresni profil jak genovych rodin, tak jednotlivych gen(.

Zavér: Arabidopsis GFP nabizi uZivateli moZnost analyzovat soucasné transkriptomicka data
Arabidopsis zacinajicich u jednoduchych celkovych dotazl, které mohou vyt dale rozsifeny a
upresnény k vizualizaci srovnavacich a vysoce selektivnich genovych profild.
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Online tools for presentation and analysis of plant microarray data.
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Moretti and L.J. Rizzo, pp. 265-295, 2008.

Abstract:

The complete sequencing and annotation of the Arabidopsis thaliana genome represented a major
step in biological research. This knowledge enabled gene prediction, assignment of functional
categories and gave an opportunity to characterize global gene expression patterns at the
transcriptome level at different developmental stages and under various physiological and stress
conditions. For the discovery of partial or whole regulatory or functional networks, the development
of high-throughput technologies was inevitable with genome-wide transcriptomic studies providing
an essential input. DNA microarray technologies are among the most frequently used methods for
parallel global analysis of gene expression. Microarray technologies now belong to the standard
functional genomics toolbox and have undergone massive development leading to increased
genome coverage, accuracy and reliability. Whole genome microarrays developed by Affymetrix in
collaboration with Syngenta represented the first standard in genome-wide transcriptomic studies in
plants. Whole genome Affymetrix ATH1 GeneChips covers about 76% of the Arabidopsis thaliana
genome. Moreover, the introduction of the Minimum Information About Microarray experiments
(MIAME) has increased the value and reproducibility of microarray experiments and has become a
standard in documentation of array experiments and in the creation of databases of comparable
transcriptomic experiments. The number of experiments exploiting microarray technology has
markedly increased in recent years. Not surprisingly, there are potential difficulties in the orientation
in available data sets. Microarray expression data are deposited on servers, many of which are
publicly accessible. Currently, these databases store several thousands of individual datasets and
some of these offer online tools for data normalization, filtering, statistical testing and pattern
discovery. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are
being introduced to simplify their use. Global statistical data analysis methods contribute to the
development of overall concepts about gene expression patterns and to query and compose
working hypotheses. More recently, these applications are being supplemented with more
specialized products offering visualization and specific data mining tools. In this chapter, an overview
of available on-line databases and web-based applications using microarray data is presented
together with the information about their structure and elementary principles.

Abstrakt:

Kompletni sekvence a anotace genomu Arabidopsis thaliana ptedstavuje velky pokrok v biologickém
vyzkumu. Tato znalost umozriuje predpovéd gen(, zafazeni do funkéni kategorie a nabizi moZnost
funkéné charakterizovat celkovy profil genové exprese rlznych vyvojovych stadii béhem
fyziologickych i stresovych podminek. K objeveni ¢aste¢né nebo celkové regulacni funkéni sité, vyvoj
presnych DNA cipovych technologii byl nezbytny spolu s celogenomovymi transkriptomickymi
studiemi. DNA Cipové technologie patfi k nejcastéji pozivanym metodam ke globalni paralelni analyze
genové exprese. Tyto technologie nyni patfi ke standardnim funkénim genomickym ndstrojam, které
prosly masivnim vyvojem vedoucim k vyssi genomové pokryvnosti, presnosti a spolehlivosti. Vyvoj



celogenomovych DNA CipU pokryva 75% genomu Arabidopsis thaliana. Navic, zavedeni Minimum
Information About Microarray experiments (MIAME) umoznilo vzrist jejich hodnoty a reproducibility
a stal se standardem v dokumentaci téchto experimen(t a tvorbé databazi srovnatelnych
transkriptomickych experimentl. Pocet experiment( vyuZivajicich DNA Cipy v poslednich letech
vyznamné vzrostl. Neni prekvapenim, Ze to znesnadiiuje orientaci v dostupnych datovych zdrojich.
Expresni data jsou ukladana na serverech a mnoho z nich jsou verejné pristupny. V soucasné dobé
tyto databaze obsahuji data z nékolika tisic experiment(, nékteré z nich nabizeni on-line nastroje k
normalizaci dat, filtrovani, statistickému testovani a odhalovani expresnich profilGd. Soucasné s
hromadénim transkriptomickych dat pribyva také on-line nastroju k zjednoduseni nakladani s nimi.
Metody globalni statistické analyzy dat pfispély k rozvoji celkovych pohled( na strukturu genové
exprese a tvorbu pracovnich hypotéz. Tyto aplikace jsou v posledni dobé poskytovany s vice
specializovanymi produkty nabizejicimi vizualizac¢ni a specidlnimi nastroji k ziskavani dat. V této
kapitole nabizime prehled dostupnych on-line databazi a webovych aplikaci vyuZivajicich expresni
data spolu s informaci o jejich strukture a zakladnich principech.



