
 

 

School of Doctoral Studies in Biological Sciences 
 

University of South Bohemia in České Budějovice 
Faculty of Science 

 
 

 

 

 

 
 

Insect overwintering: physiological and biochemical 
adaptations to low temperatures 

 

 

 

Ph.D. Thesis 

 

 

Mgr. Jan Rozsypal 

 

 

 

Supervisor: Prof. Ing. Vladimír Košťál, CSc. 

Biology Centre ASCR, Institute of Entomology 
Laboratory of Insect Diapause 

České Budějovice, Czech Republic 
 

 

 

 

České Budějovice 2013 



This thesis should be cited as:  

Rozsypal, J,  2013:  Insect  overwintering:  physiological  and   biochemical  adaptations   to  low 
temperatures.  Ph.D. Thesis  Series, No. 2. University of  South  Bohemia,  Faculty  of  Science, 
School of Doctoral Studies in Biological Sciences, České Budějovice, Czech Republic, 82 pp. 

  Annotation 

Complex experimental data on insect adaptation for survival at low temperatures, with special 
reference to overwintering in temperate climate zone, are presented in this thesis. The cold tolerance 
strategies were examined in four species: the codling moth (Cydia pomonella), the bark beetle 
(Ips typographus), the red firebug (Pyrrhocoris apterus), and the fruit fly (Drosophila melano-
gaster). Two of these species, C. pomonella and I. typographus, are serious pests and knowledge 
on their overwintering biology is of great importance for development of pest management pro-
grams. Numerous physiological and biochemical parameters, such as supercooling point, ther-
mal hysteresis between melting and freezing points, survival in supercooled and frozen states, 
osmolality of hemolymph, water and energy reserves, and detailed metabolomic composition of 
hemolymph and tissues were studied during cold season in the field-collected animals or analy-
zed in laboratory-acclimated animals in order to assess the insects' capacity for winter survival. 
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1. Introduction 
 
Insects represent one of the most successful groups of organisms, which have evolved on Earth. 
They inhabit almost every environment from the tropics to the polar regions. Especially those 
species inhabiting higher latitudes have evolved numerous adaptations to the seasonally 
changing environmental conditions. Low temperatures in winter or the dry season in tropics 
represent the most serious dangers, which insect must deal with. 
 
This chapter should introduce the reader to current knowledge of insect adaptation to changing 
environmental conditions concentrating on cold tolerance and overwintering. Strategies and 
mechanisms involved in overwintering will be outlined and several examples will be presented. 
The mechanisms involved in overwintering are the main subject of my interest. My thesis 
focuses mainly on numerous physiological and biochemical parameters which may play a key 
role in overwintering success. The overwintering larvae of the codling moth (Cydia pomonella) 
served as model species for my studies. Other species involved in my thesis are the red firebug 
(Pyrrhocoris apterus), the spruce bark beetle (Ips typographus) and the fruit fly (Drosophila 
melanogaster). 
 
 
 

1.1. Diapause 
 
Environmental conditions on Earth change seasonally. Periods favorable for growth, 
development and reproduction are limited to a specific time of year (summer). Seasonal 
changes become more apparent with increasing latitude. While the changes are very mild or 
negligible in the tropical zones, they become more apparent in temperate zones and reach their 
maximum in the polar zones. In the temperate zone, growth, development and reproduction of 
ectotherms, including insects, are usually restricted to favorable conditions of summer. On the 
contrary, winter conditions such as low temperatures influence life functions and rate of 
metabolic processes and pose a threat of chilling or freezing injury and also a risk of 
desiccation. Seasonal changes have a cyclic annual and thus predictable pattern. In response to 
the predictable nature of these changes many insect species have evolved a form of dormancy – 
diapause. 
 
Diapause can be considered an alternative developmental pathway characterized by many 
significant changes. These changes involve the halt of development or reproduction, alterations 
to the developmental program (to various extent), suppression and changes in metabolism and 
gene expression, which is behind these changes. Diapause occurs during a specific stage of 
development, which is species specific and results in deep change of phenotype (Tauber et al., 
1986a,b; Denlinger, 2000, 2002; Macrae, 2005). For example, the silkmoth (Bombyx mori) 
enters diapause as an early embryo (Yamashita, 1996), the codling moth (Cydia pomonella) 
diapauses in the last larval stage (Ashby and Singh, 1990), the cabbage butterfly (Pieris 
brassicae) in the pupal stage (Pullin, et al. 1991), and the European peacock butterfly (Inachis 
io) as an adult (Dvořák et al., 2009). The diapausing stage may take very different forms, from 
various immobile stages such as diapausing embryo or pupa, which do not accept any food, to 
fully mobile feeding larvae or adults (Košťál, 2006).  



 

Diapause is understood as a dynamic process consisting of several more or less distinct phases: 
induction, preparation, initiation, maintenance, termination and post-diapause quiescence 
(Košťál, 2006). The induction phase occurs during a specific developmental stage, when the 
environmental cues are perceived and transduced into switching the ontogenetic pathway from 
direct development to diapause development. The preparation phase takes place in species, 
which have a period of direct development between induction and initiation phases, but some 
preparations (physiological or behavioral) may take place as well. Direct development ceases 
during the initiation phase and metabolism is suppressed. Mobile diapausing stages may 
continue to feed and seek a suitable overwintering site. The developmental arrest persists during 
the maintenance phase, even if the conditions are favorable for development. Metabolic rate is 
low and relatively constant. Sensitivity to diapause-terminating conditions gradually increases. 
Termination of diapause occurs when some specific changes in the environmental conditions 
stimulate the decrease of diapause intensity to its minimum level and thus synchronize 
individuals within the population. By the end of the termination phase, a physiological state 
allowing resumption of direct development (if the conditions permit) is reached. After diapause 
is terminated, the insects may remain in a state of post-diapause quiescence which is 
maintained directly by environmental factors such as temperature (for more detail on diapause 
phases see Košťál, 2006). 
 
Diapause may be obligatory or facultative. Species with obligatory diapause enter diapause 
regardless of the environmental conditions. Diapause is an integral part of their ontogenesis. 
However, most species enter facultative diapause, which is induced by specific environmental 
stimuli. Most of the insect species have evolved an ability to perceive and respond to specific 
environmental stimuli (so called token stimuli) that signal the upcoming seasonal changes 
(Tauber et al., 1986a). The most common token stimulus (or signal) is shortening day-length in 
late summer and early autumn. Day-length (or, more precisely, night-length in most cases) is 
perceived by a combination of visual and non-visual light receptors, processed in the brain and 
transduced to changes in a hormonal signal, which is responsible for changes in physiology, 
biochemistry, morphology and behavior (Yin and Chippendale, 1976; Bell, 1994; Denlinger, 
2000, 2002). Although the photoperiod is considered the major signal, there are other cues such 
as temperature, quality of food, social and ecological interactions, intraspecific or interspecific, 
which have an influence on diapause incidence (Steinberg et al., 1992a,b; Košťál, 2006). 
 
Soon after initiation, diapause is maintained even if diapausing insects experience conditions 
favorable for growth and reproduction (Tauber et al., 1986a). Diapause thus prevents insects 
from resuming development prematurely, for example when a short period of favorable 
conditions occurs during autumn. The process of diapause termination is still not completely 
understood and certain disagreements about this subject remain to be resolved. While in some 
insects kept under constant laboratory conditions the termination of diapause is spontaneous, 
some other insects kept under constant conditions maintain diapause until they die. In the field 
diapause termination is initiated when some environmental conditions or stimulus or 
combination of stimuli occur. As individuals of the same population enter diapause during 
different parts of the year, each of them maintains diapause for different period of time. 
Diapause is then maintained until the period of adverse conditions come, which serves as 
synchronizing stimulus and also prevents premature termination of diapause. During the 
termination phase the intensity of diapause gradually decreases, until the resumption of direct 



 

 

development is enabled (Košťál, 2006). Some authors suggest low temperatures to be the cue 
which initiate diapause termination, but some other authors consider different cues like high 
temperatures, photoperiodic signal or contact with water (moisture) (for review see Tauber and 
Tauber, 1976; Hodek, 2002; Košťál, 2006). 
 
Diapause enables insects to survive through periods unfavorable to development and 
reproduction such as periods of cold or drought and it also synchronizes activities of the 
individuals within the population. In some species, diapause seems to directly influence the 
resistance to adverse environmental conditions, while in some other species the relationship 
between diapause and resistance to environmental conditions is not so obvious. Some insect 
species become cold resistant (cold-hardy) as they enter diapause, but other species need a 
period of cold acclimation to reach a certain level of cold hardiness (for more details on cold 
acclimation see section 1.3.4.). The relationship between diapause and cold hardiness may vary 
from purely coincidental to tightly linked (for review see Denlinger, 1991; Pullin, 1996; 
Hodková and Hodek, 2004).  
 
 
 

1.2. Overwintering strategies 
 
Insect species inhabiting the temperate zone must deal with different conditions during different 
parts of the year. Temperatures in summer may reach high values; there may be periods without 
rainfall resulting in low humidity. Such conditions may pose a threat for the relatively small 
insect body in terms of desiccation. Insects may encounter somewhat similar situation in winter 
when a combination of low temperature, absence of liquid water / presence of ice in the 
environment and low absolute humidity of the air may cause substantial loss of body water. 
 
Most obviously, sub-zero temperatures during winter represent a risk of formation of ice within 
the insect bodies. While some insects tolerate extracellular freezing, intracellular freezing is 
considered incompatible with life processes (Storey and Storey, 1988). In theory insects have 
three options for dealing with seasonally low temperatures: to migrate out of the cold region, to 
regulate body temperature or to tolerate low body temperatures.  
 
Migration  over long distances, though not widespread among insects, represents one of the 
possible strategies. For instance, Monarch butterflies (Danaus plexippus) migrate from the USA 
to Mexico (Urquhart and Urquhart, 1976; Brower, 1995). Overwintering strategy of many 
insect species includes migration over short distances. They avoid low temperatures by vertical 
migration into the soil or selection of protected hibernacula (Lee, 1989). Substances such as 
litter provide an adequate protection against harsh winter conditions and minimize the risk of 
cold injuries. Species originating from sub-tropical and tropical zones often search for their 
hibernacula in human residences (Bale, 1996). Selection of a suitable site is thus vital for many 
insect species for winter survival (Danks, 2006). 
 
Another strategy is to regulate body temperature. In insects, thermoregulation is feasible only 
at superorganism level of some colonial and social insect species. Honey-bees (Apis spp.), 
which probably represent the best known example of this strategy, maintain a constant hive 



 

temperature of approximately 35°C (20°C to 35°C in winter) by behavioral and physiological 
activities of the colony (Heinrich, 1981; Southwick and Heldmaier, 1987). 
 
The last, but clearly most widespread option is to tolerate low body temperature. Many insect 
species cannot evade the exposure to low temperatures, thus they have evolved a number of 
physiological and biochemical adaptations, which we refer to as cold hardiness. 
 
 
 

1.3. Cold hardiness 
 
Temperature influences every aspect of insect’s life, from rate of biochemical reactions which 
are well known to be temperature dependent, to growth, development and reproduction. Cold 
hardiness refers to the ability of an insect (or any organism) to survive exposure to low 
temperatures (Salt, 1961; Danks, 1978; Zachariassen, 1985; Lee, 1989). Physiological 
mechanisms of cold hardiness (cold tolerance) are the focus of this thesis. 
 
 
1.3.1. Classes of cold hardiness 

Insects can be divided into two major categories, according to their strategy for survival in the 
cold: “freeze-avoiding” and “freeze-tolerant” (Lee, 1991; Sinclair et al., 2003). Freeze-
avoiding insects cannot survive ice formation in their body fluids and often die well above 
temperature of crystallization of their body fluids (supercooling point, SCP; see section 1.3.3. 
for more information). Freeze-tolerant species can survive partial freezing of their body fluids 
(Lee, 1989; Bale, 1993; Renault et al., 2002). Although these two strategies are different in 
principle, they share several similarities and some species are capable of switching from one 
strategy to the other (for example: Horwath & Duman, 1984; Fields and McNeil, 1986). 
Because of apparent deficiency of only having two categories, some authors attempted to 
establish a new system of classification. Bale (1993, 1996) proposed a new system of 
classification defining five categories of cold hardiness: 1) Freeze tolerance, 2) Freeze 
avoidance, 3) Chill tolerance, 4) Chill susceptibility and 5) Opportunistic survival. 
Sinclair (1999) proposed a new system of classification consisting of four categories within the 
“freeze tolerance” category based on SCP and the point of lower lethal temperature: 1) Partial 
freezing tolerance, 2) Moderate freezing tolerance, 3) Strong freezing tolerance and 4) Freezing 
tolerance with low SCP. Unfortunately, the systems of classification of cold hardiness suffer 
from the same flaw as almost all such systems. No matter how many categories are defined, an 
exception breaking the rule can be always found. This inconsistency may be the main reason 
that, despite efforts for more thorough sorting, the old division into two categories is still widely 
used in literature. 
 
The main issue insects must deal with at subzero temperatures is the phase transition of water 
from liquid to solid. Insects have fundamentally five options how to deal with formation of ice: 
1) Supercooling represents the most widespread strategy, when formation of ice is to be 
avoided (Lee et al., 1996) (for more information on supercooling see section 1.3.3.). 2) 
Extracellular freezing represent another strategy widespread in insects. Opposite to 



 

 

supercooling, the formation of ice is initiated at mild sub-zero temperatures (Storey and Storey, 
1988). 3) Intracellular freezing, although usually considered lethal (Zachariassen, 1985; 
Storey and Storey, 1988), is tolerated at least in some animals. Though this strategy has not 
been described in insects yet, some authors reported that isolated fat body cells of diapausing 
Eurosta solidaginis can survive intracellular freezing (Salt, 1962; Davis and Lee, 2001). There 
is also one known example of survival of intracellular freezing at the organism level. A 
nematode Panagrolaimus davidi can survive extensive intracellular freezing (Wharton and 
Ferns, 1995). 4) Cryoprotective dehydration was reported in several arctic collembolans 
(Holmstrup and Sømme, 1998; Sørensen and Holmstrup, 2011). The potential danger of 
formation of ice is avoided by removing most of the body water.  5) Glass transition 
(vitrification ) occurs when liquid become solid at temperatures usually far below the normal 
freezing point, but without the formation of crystalline phase (MacFarlane, 1987). A glass is a 
solution of high viscosity, which prevents all physical and chemical reactions that require 
molecular diffusion, including ice nucleation (Danks, 2000). Some authors reported vitrification 
to be an essential part of the survival strategy of anhydrobiotic invertebrates (Sakurai et al., 
2008; Hengherr et al., 2009) and some deeply supercooled arctic beetles (Sformo et al., 2010).  
 
 
1.3.2. Effects of low temperatures 

Low temperatures can be defined in various ways because it may cover a wide range of 
temperatures. Low temperature can be understood as any temperature below the threshold for 
activity, growth and development, however, more strictly, it is a temperature which has a 
negative impact on insect physiology, causes some sort of injury, and, consequently, a loss of 
fitness and/or mortality (Lee, 1991). The lowest temperature that causes no significant mortality 
during prolonged exposure to cold is referred to as upper limit of cold injury zone (ULCIZ) 
(Nedvěd, 1998; Nedvěd et al., 1998). The range of low temperatures is species-specific and 
depends on the extant physiological state of the insect. Even temperate insects may die when 
exposed to temperatures considerably above 0°C when not properly acclimated. Most attention 
is focused on sub-zero temperatures and their effects on insect organism. 
 
Insects exposed to low temperatures may suffer a cold injury. Mechanisms of cold injuries are 
still not completely understood because of their complexity (low temperature influences 
biological processes at all levels). Cold injury can be divided into two main categories: freeze 
injury and chill injury (Storey and Storey, 1988). Freeze injury occurs as a result of ice crystal 
formation within the insect body. Damage caused by formation of ice crystals within the cells is 
generally considered to be lethal, however some exceptions have been reported (see section 
1.3.1.). In most insect species, freezing temperatures lead to formation of ice crystals in 
extracellular fluids. As molecules of water attach to growing ice crystals, the extracellular fluids 
become more concentrated, which results in osmotic gradient between the unfrozen 
extracellular fraction and the cytoplasm of the cells. Water is then drawn off the cells resulting 
in higher concentration of intracellular solutes which may reach toxic levels. In addition, ice 
crystals alone may cause direct mechanical damage to the cells. 
 
In the case of chill injury, damage is caused by temperature below the threshold for activity but 
above the temperature of crystallization of body fluids. Chilling injuries can be further divided 



 

into acute (cold shock) and chronic (cumulative). Rapid cooling to relatively low temperatures 
results in cold shock, which is believed to cause damage predominantly to membranes (Quinn, 
1985). The membrane normally exists in a liquid crystalline phase, but when exposed to low 
temperatures it may transfer into a highly organized gel phase. In the gel phase the membrane 
lipids exhibit no or minimal mobility, which results in the loss of function of the membrane. 
Functions of the membrane proteins are also dependent on membrane fluidity. Transition to gel 
phase may seriously disrupt the membrane transport (Hazel, 1989). At temperatures above 
optimal level, the membrane may transfer into a hexagonal phase and loose its integrity. 
Transition to the hexagonal phase may also be caused by low hydration (Kirk et al., 1984). 
Chronic chilling to relatively mild subzero temperatures negatively influences the function of 
proteins. Enzymatic activity of proteins decrease with decreasing temperature (Privalov, 1990) 
and thus ATP production can be disrupted, which results in the collapse of vital processes such 
as ion transports. Moreover, metabolites may accumulate and reach toxic concentration when 
metabolic pathways are disrupted. 
 
 
1.3.3. Ice nucleation, supercooling and water relations in overwintering insects 

Homogenous ice nucleation occurs when a sufficient number of hydrogen bonds between 
molecules of water develop spontaneously at the same location to form a compact initial 
nucleus. The initial nucleus, when formed, slowly changes its shape and size until it reaches a 
stage that allows rapid expansion, resulting in crystallization of the entire system (Matsumoto et 
al., 2002). Homogenous nucleation in a small volume of extremely pure water does not occur 
until temperatures as low as -39°C. Ice nucleation is a stochastic process dependent on 
formation of sufficient number of water molecules into ice crystal (Ramløv, 2000; Wilson et al., 
2003). The formation of the initial nucleus depends on the number of water molecules available 
to form it. The probability of ice nucleation thus increases with the volume of water.  
 
Liquid which is cooled below its melting point without a phase transition into solid is called 
supercooled (Ediger, 2000). Apart from the example of ultra pure water, all other aqueous 
solutions (including those in living organisms) will undergo heterogeneous nucleation, where a 
substance other than water serves as the nucleus around which water molecules aggregate. Such 
substances are called heterogenous nucleators (Lee, 1991; Wilson et al., 2003). Because of the 
presence of nucleators, larger volumes of tap water usually freeze at temperatures close to 0°C 
(Doucet et al., 2008). The nucleation activity was described in both organic and inorganic 
substances (Zachariassen, 1992). Many insect species synthesize hemolymph proteins with their 
capacity to catalyze ice nucleation at mild subzero temperatures. Ice-nucleating proteins allow 
insect to control (to a limited extend) the formation of ice crystals within their bodies. 
Especially insects which tolerate freezing of their body fluids often synthesize these proteins to 
initiate freezing at relatively high sub-zero temperatures (Storey and Storey, 1988). Freezing at 
mild subzero temperature allows them to adapt to osmotic pressure caused by the formation of 
ice as well as direct mechanical action of growing ice crystals (Storey and Storey, 1988; Lee 
and Costanzo, 1998). In 1970s, a new category of ice nucleators, ice-nucleating 
microorganisms, was discovered. So-called ice-nucleating bacteria have the capacity to catalyze 
the formation of ice at temperatures as high as -2°C. Most of these bacteria are epiphytic plant 
pathogens that facilitate freezing by nucleating water on the plant surface, causing freeze injury. 



 

 

These bacteria may be responsible for substantial amount of crop losses due to frost (Lee et al., 
1996). These bacteria, when ingested by an insect with food, can promote freezing of its body 
fluids. Some authors reported microorganisms with similar nucleating activity being a part of 
normal flora of the insect gut (for example: Strong-Gunderson et al., 1990; Lee et al., 1991; 
Worland and Block, 1999). Many other substances also have ice nucleating activity, but their 
nature is still not well understood (Lee, 1991). The best ice nucleator available in nature is ice 
itself. While some species try to avoid contact with external ice, for some other species the 
contact with ice is crucial to initiate freezing at mild sub-zero temperatures (Lee, 1991). Unlike 
freeze-tolerant insects, freeze-avoiding insects must avoid formation of ice within their bodies 
and promote supercooling. Since ice-nucleators of various nature may be present in food, it is 
essential for freeze-avoiding insects to stop feeding and to evacuate their gut, before the cold 
season (Sømme 1999).  
 
Removing the ice nucleators is not the only way to regulate ice formation within the insect 
body. Some insect species synthesize anti-freeze proteins (also called thermal hysteresis 
proteins) which attach to ice crystals preventing them from further growth (Jorov et al., 2004). 
The temperature of crystallization is lowered due to the activity of these anti-freeze proteins, 
but melting temperature remains unchanged. The difference between freezing and melting 
temperature is called thermal hysteresis and allows us to measure the activity of anti-freeze 
proteins (Sømme 1999). 
 
When an initial ice crystal reaches a critical mass, surrounding water molecules attach 
themselves to it very rapidly, which results in explosive freezing in the whole volume of the 
solution. The heat of crystallization released during freezing allows us to measure the 
temperature of crystallization, usually referred to as supercooling point. The supercooling point 
(SCP) is defined as a temperature at which spontaneous freezing occurs (Wilson et al., 2003). In 
most animals (other than insects), the SCP of body fluids ranges from -0.5°C to -1.7°C (Storey 
and Storey, 1988). While the SCP refers to the lowest temperature to which an insect may be 
cooled before it freezes, the supercooling capacity refers to the maintenance of body water in 
liquid state at temperatures below its equilibrium freezing/melting point (Lee et al., 1996). The 
ability to manage supercooling is essential for both freeze tolerant and freeze intolerant insect 
species. Many insects show a seasonal variation in SCP. While in summer the SCP is closer to 
0°C, it drops in winter, in some species it even reaches temperatures as low as -60°C (Lee, 
1989). Species relying on supercooling strategy lower their SCP during the cold season to 
prevent freezing of their body fluids. The SCP value is influenced by several factors, such as 
the portion of osmotically active water and its volume, nucleators of various nature, antifreeze 
proteins, hydration, or microclimatic conditions of the overwintering site. The SCP value can 
also be modified by the presence of sugars, polyols and free amino-acids. These substances, 
called low-molecular mass cryoprotectants (for more information see section 1.3.5.), have an 
effect on both colligative and non-colligative properties of body fluids and can significantly 
modify the SCP value and reduce the effect of low temperatures on many biological structures 
(Lee, 1991; Lee et al., 1996; Zhao, 1997). 
 
The percentage of water by weight in insects usually vary from 65 to 75 % of fresh weight, 
although the level ranges from only 17% to more than 90% at different life stages of different 
species (Danks, 2000). Most insect species must face the problem of their water balance during 



 

overwintering. Many insects relying on supercooling strategy overwinter surrounded by ice 
within their hibernacula. In such a case water molecules tend to evaporate from the body and 
join the crystals of surrounding ice, which results in desiccation. In order to minimize the loss 
of water, the cuticular lipid layers become thicker and the composition of cuticular lipids also 
changes before the cold season (Hegdekar, 1979; Kaneko and Katagiri, 2004). Other 
mechanical barriers such as cavities build in soil or cocoons also prevent water loss from 
individuals. Insect cocoons represent a multifunctional barrier, which may protect its occupants 
from desiccation, penetration of ice crystals and water and also have anti-bacterial and anti-
fungal properties (Danks, 2004). 
 
In the case of freeze-tolerant insect species, body fluids become more concentrated as portion of 
water molecules joins the ice crystals. The unfrozen fraction of body water which is locked in 
hydration spheres of proteins and many other molecules and particles is called “bound water”. 
In many insects the concentration of solutes increases during overwintering, which results in an 
increase of volume of bound water at the expense of osmotically active water (free water). 
Higher amount of bound water (relative to osmotically active water) limits the availability of 
water molecules for evaporation and ice growth (Block, 2002). As free water molecules join the 
ice crystals, the osmotic concentration of the unfrozen fraction increases. The vapor pressure of 
the unfrozen fraction of body water then reaches an equilibrium with the ice. Thus, freeze-
tolerant insect should not loose water in favor of external ice.  
 
 
1.3.4. Cold acclimation 

Most diapausing insects require a period of cold acclimation to attain maximum level of cold 
hardiness. Cold acclimation can be defined as a reversible phenotypic change that occurs in 
response to declining ambient temperatures and enhances the level of cold hardiness. Cold 
acclimation is often an integral component of diapause (Salt, 1961; Denlinger, 1991; Šlachta, et 
al. 2002). Non-diapausing insects can also undergo cold acclimation. The importance of cold 
acclimation can be illustrated by an example of the fruit fly larva (Drosophila melanogaster) - 
non-diapause stage of a tropical insect species, which becomes cold tolerant during cold 
acclimation (Overgaard et al., 2008) and can even tolerate partial freezing of its body fluids 
(Košťál et al., 2012).  
 
Cold acclimation comprises  several mechanisms including synthesis and accumulation of so-
called low-molecular mass cryoprotectants (for more details see section 1.3.5.) including 
polyols, sugars and free amino acids (Dubach et al., 1959; Miller & Smith, 1975; Sømme, 1982; 
Lee, 1991, Sømme, 1999). Other mechanisms include protective changes in the composition of 
biological membranes. Changes of cell membrane composition represent an important part of 
the cold acclimation process. Sinensky (1974) proposed the “homeoviscous adaptation theory” 
(HVA), which postulates changes in membrane composition in order to maintain proper 
viscosity of the membrane in response to temperature. Because of some discrepancies in 
observations, McElhaney (1984) introduced a “homeophasic adaptation theory” (HPA), which 
reflects the need for preservation of the membrane in its functional, liquid crystalline phase. 
Hazel (1995) broadened the concept to “dynamic phase behavior” (DPB) to stress the 
dynamism of the phase change. His model assumed a relationship between body temperature 



 

 

(or ambient temperature) and the temperature of the phase transition of the membrane lipids. In 
order to prevent transitioning to gel phase during low temperatures, and to keep the membrane 
functional, changes in membrane composition are made. The effect of low temperature on the 
membrane is compensated by an increase of unsaturated fatty acids, incorporating shorter chain 
fatty acids and by increasing the portion of phosphatidylethanolamines relative to 
phosphatidylcholines. Adjustments of membrane composition in response to temperature 
changes have been observed in many insect species, for example Cymbalophora pudica (Košťál 
& Šimek, 1998), Drosophila melanogaster (Overgaard et al., 2008), Chymomyza costata 
(Košťál et al., 2003), Pyrrhocoris apterus (Hodková et al., 1999; Šlachta et al., 2002; Tomčala 
et al., 2006). 
 
The process of rapid cold hardening, when a short exposure to low temperature extends survival 
at freezing temperatures, represents a different type of cold acclimation. Rapid cold hardening 
was first described in the flesh-fly Sarcophaga crassipalpis (Chen et al., 1987). The same 
process was later observed in several other species (Lee et al., 1987; Czajka and Lee, 1990; 
Qiang et al., 2008). Capacity for rapid cold hardening is a process independent of diapause. It is 
probably widespread among insects, allowing them to respond quickly to daily temperature 
oscillations (Lee et al., 1987). Rapid cold hardening can provide a significant advantage 
especially in spring and autumn when temperature fluctuates and can drop rapidly. The 
mechanisms responsible for rapid cold hardening are not sufficiently understood. Accumulation 
of sugars and polyols (Chen et al., 1987, Michaud and Denlinger, 2007), or the synthesis of 
heat-shock proteins, which represent a universal reaction to rapid temperature changes (Joplin 
et al., 1990) are considered to be responsible by some authors. 
Heat-shock proteins (HSPs) were first discovered in fruit flies exposed to heat (Tissières et al., 
1974). HSPs include both inducible and constitutive forms. The constitutive form promotes 
correct folding of newly synthesized proteins and maintains their function in a normal, 
unstressed cell. The inducible form serves as molecular chaperone. They bind to partially 
denatured proteins and mediate either their repair or degradation (Craig et al., 1994). HSPs are 
not only expressed during a heat shock but also in a response to a variety of other stresses such 
as cold shock, oxidative and osmotic stress or irradiation (De Maio, 1999). Synthesis of HSPs 
in response to low temperature was reported in several insect species, for example: Drosophila 
sp. (Goto & Kimura, 1998), Leptinotarsa decemlineata (Yocum, 2001) or Delia antiqua (Chen 
et al., 2006). The most complex study has been done on the flesh fly Sarcophaga crassipalpis 
(Joplin et al., 1990; Yocum et al., 1998; Rinehart et al., 2000; Hayward et al., 2005). 
 
 
1.3.5. Low-molecular mass cryoprotectants 

Seasonal changes in cold hardiness of insects are also related to changes in the concentrations 
of low-molecular mass cryoprotectants in the hemolymph (Sømme, 1999). 
The role of low-molecular mass cryoprotectants in overwintering insect was recognized in the 
middle of 20th century (for example: Salt, 1957; Chino, 1957; Dubach et al., 1959). 
Cryoprotectants identified in insects include sugars (trehalose, fructose, glucose etc.), polyols 
(glycerol, sorbitol, mannitol, ribitol etc.) and free amino acids (proline, alanine etc.) as well 
(Lee, 1991; Sømme, 1999; Ramløv, 2000). A number of insect species synthesize multiple 



 

cryoprotectants, which may give an advantage - for the concentration of none of the substances 
reaches a toxic level (Ramløv, 2000). 
 
The cryoprotective role of these substances is based either on colligative or non-colligative 
properties. High concentrations of cryoprotectants (in order of mol.kg-1) will cause a substantial 
colligative depression of melting and freezing point of insect hemolymph. In freeze-avoiding 
insects, the high concentration of cryoprotectants will result in the promotion of supercooling 
capacity, while in freeze-tolerant insects the cryoprotectants will regulate dehydration of the 
cells caused by the formation of extracellular ice (Zachariassen, 1985; Lee, 1991; Ramløv, 
2000). Non-colligative action of cryoprotectants accumulated at low concentrations (order of 
tens to hundreds of mmol.kg-1) is based on stabilization and protection of proteins and 
membranes (Storey and Storey, 1991). The non-colligative effect of solutes is based on 
mechanism of preferential hydration of proteins and membranes or, vice versa, preferential 
exclusion of solvents from the vicinity of proteins and membranes. Solvents and water compete 
for binding to the protein surface. When solvents are excluded, they allow water molecules to 
bind preferentially to the protein domain and thus preferentially hydrating it (Timasheff, 2002; 
Shimizu and Smith, 2004). For example, trehalose is known to be an exceptional stabilizer of 
proteins; it helps to retain activity of enzymes in solution as well as in their freeze-dried state 
(Kaushik and Bhat, 2003). 
 
The accumulation of cryoprotectants is influenced by several environmental factors such as 
temperature, photoperiod and desiccation. The main factor triggering biosynthesis and the 
accumulation of cryoprotectants is low temperature, usually below 5°C. In many insect species 
the ability to accumulate cryoprotectants is restricted to diapausing individuals, but in other 
species, diapause is not a prerequisite for cryoprotectant accumulation (Lee, 1991). 
Cryoprotectant biosynthesis takes place in fat body tissues and glycogen reserves serve as the 
main source. Many authors reported conversion of glycogen to cryoprotectants during winter 
and back to glycogen in spring (for example: Hayakawa & Chino, 1981; Shimada et al., 1984; 
Rojas et al., 1994; Bemani et al., 2010). The concentration of cryoprotectants in the hemolymph 
usually shows a seasonal pattern, when the concentration rises from low or even zero in early 
autumn to its maximum value in mid winter and drops again in early spring (for example: 
Frankos and Platt, 1976; Li et al., 2000; Atapour and Moharramipour, 2009).  The level of cold 
hardiness (survival at low temperatures and/or SCP) often correlates with the concentration of 
cryoprotectants (for example: Mansingh and Smallman, 1972; Gehrken, 1984; Chen et al., 
1991; Goto et al., 2001; Atapour and Moharramipour, 2009). Some authors, however, reported 
no correlation between cryoprotectant concentration and cold hardiness, or the seasonal trends 
of survival/SCP and of cryoprotectants were variously shifted (Pullin et al., 1991; Pullin and 
Wolda, 1993; Li et al., 2003; Vesala et al., 2012). Pullin (1996) suggested an evolutionary 
scenario explaining the accumulation of cryoprotectants to be a side-product of metabolic 
suppression. In this scenario, the diapause-induced metabolic suppression typically results in 
the accumulation of low concentrations of sugars and polyols, which, later in the course of 
evolution, may become subject to positive selection for survival in tropical regions (where the 
compounds might serve as compatible osmolytes) during periods of drought. Further selection 
of the cryoprotective role of accumulated compatible, osmolytic compounds might have taken 
place during insect colonization of higher latitudes.  
 



 

 

Besides sugars and polyols, some free amino acids seem to have similar cryoprotective role in 
insects (Lee, 1991; Sømme, 1999; Ramløv, 2000). Košťál et al. (2012) reported a free amino 
acid proline to have a significant impact on cold hardiness in Drosophila melanogaster. Other 
authors reported an increase of alanin (Li et al., 2001) or alanin and serin (Goto et al., 2001). 
 
 
 

1.4. Model species 
 

1.4.1. Codling moth 

The codling moth (Cydia pomonella) is a major insect pest of apples and some other fruits such 
as pears, apricots, and walnuts. This species is thought to have originated in Eurasia but later 
has spread around the world following apple cultivation. It now occurs in most apple production 
areas in the temperate zone (in both southern and northern hemispheres) but has also been 
reported in subtropical and tropical countries (Barnes, 1991; Willett et al., 2009). The great 
economic importance of this pest, and still unresolved difficulties in practical implementation of 
routine large-scale programs for management of C. pomonella in apple orchards (Dorn et al., 
1999), are two main drivers of scientific interest into this species.   
 
The codling moth overwinters as a diapausing fifth instar larva in a cocoon spun under the bark 
of apple trees or in litter near the base of the trees (Miller, 1956; Peterson and Hamner, 1968; 
Sieber and Benz, 1980). The codling moth has five larval instars regardless of temperature 
conditions. Optimal temperature for the development of larvae ranges between 28 and 32°C 
(Williams and McDonald, 1982). In central Europe, the codling moth usually gives rise to one 
or two generations. When caterpillars reach the stage of fully grown fifth instar larva by 
approximately half of July, they will continue development and give rise to the summer 
generation. Most central European populations, however, form only a partial summer 
generation depending on local weather of that particular year (Miller, 1956) and most 
caterpillars of the spring generation do not complete their development to adult stage and 
directly enter diapause (Miller, 1956; Peterson and Hamner, 1968; Sieber and Benz, 1980).  
 
Most of the studies on the codling moth focus on diapause and/or its implications for pest 
management (for example: Peterson and Hamner, 1968; Riedl and Croft, 1978; Sieber and 
Benz, 1980; Steinberg et al. 1992a,b). Information about cold hardiness and winter survival are 
rather sporadic in literature. Several studies report very high mortality (often close to 100%) 
caused by bird predation of the larvae that overwinter under the bark of apple trees (McLellan, 
1958; 1959; LeRoux, 1959; Mailloux and LeRoux, 1960; Solomon et al., 1976; Glen and 
Milsom, 1978). It is rather surprising, given this high rate of predation, that, according to some 
authors, overwintering sites under bark are preferred over the litter sites (Gould and Geissler, 
1941; McLellan, 1960). Survival rates in litter were not studied in detail. Only two papers 
report no or very little survival (Solomon, 1976; Glen and Milsom, 1978). Besides predation, 
the winter cold represents another significant risk for overwintering larvae, but older literature 
provides only little information about cold hardiness and overwintering in the codling moth 
larvae (for references see Neven 1999). Only two populations, in the Pacific Northwest in the 
USA (Neven, 1999) and in the Middle East in Iran (Khani and Moharramipour, 2007; 2010; 



 

Khani et al., 2007) were studied in more detail. Both groups of authors agree on the codling 
moth being freeze-intolerant and the fact that it does not survive below its SCP, which ranges 
between -22°C and -24°C. Both groups also reported trehalose to be the major metabolite 
present in overwintering larvae, but while Khani et al. (2007) found a positive correlation 
between trehalose concentration and supercooling capacity, no such correlation was reported by 
Neven (1999). Despite the contributions of these authors, many aspects of cold hardiness and 
underlying mechanisms are still not completely understood, and no elaborated study is available 
regarding cold hardiness in central European populations of this species. 
 
 
1.4.2. Spruce bark beetle 

The spruce bark beetle (Ips typographus) is the most serious pest of spruce plantations through 
most of Eurasia (Christiansen and Bakke, 1988; Wermelinger, 2004). Under normal conditions 
this pest prefers dead or dying trees, but when an outbreak occurs, I. typographus changes its 
behavior dramatically and is able to colonize and kill even healthy growing trees (Christiansen 
and Bakke, 1988).  
 
In central Europe, when the day-length shortens below 15h, around the middle of August 
(Schopf, 1985,1989), adult beetles cease their reproduction and enter reproductive diapause. 
Diapausing beetles overwinter under the bark of spruce trees. Diapause is terminated during 
December/January (Doležal and Sehnal, 2007) and the beetles then remain in a state of 
quiescence until temperature begins to rise during the spring, when development and 
reproduction resume. Several weeks after laying eggs the parental beetles leave their first brood 
and give rise to a sister brood. The first brood may give rise to a second generation or feed and 
enter diapause, depending on the photoperiod and temperature. Central European populations of 
I. typographus usually develop two complete generations and several sister broods 
(Wermelinger, 2004). 
 
Despite the great destructive capability and thus high economic impact of this pest, knowledge 
of its overwintering is relatively limited. I. typographus rely mostly on supercooling strategy 
(Hansen et al., 1982) but some possibility, at least partial, of freezing tolerance was also 
reported (Annila, 1969). The only earlier record of polyol analysis, reporting glycerol and 
glucose to be the major polyols present, is the paper by Hansen et al. (1982) on Estonian 
population of I. typographus. More recently, a paper by Košťál et al. (2007) found glycerol to 
be only a minor polyol and it described a relatively complex system of cryoprotectants with 
glucose, trehalose, sorbitol, mannitol and erythritol as major components. 
 
 
1.4.3. Red firebug 

The red firebug (Pyrrhocoris apterus) inhabits the western part of the palearctic region but 
reaches into southern Siberia, Mongolia and China (Stichel, 1959; Puchkov, 1974) as well. In 
central Europe, P apterus clusters, often in large numbers, at the base of linden trees whose 
seeds are the main component of its diet. Beside linden seeds P. apterus also feeds on other 
plants like mallows (Malvaceae) (Tischler, 1959; Socha, 1993) and was reported to be 
occasionally necrophagous (Southwood and Leston, 1959). 



 

 

Under natural conditions of central Europe, adults of P. apterus enter a facultative reproductive 
diapause in response to the photoperiod in July and August, and remain in diapause through the 
end of summer and until early autumn. When temperatures decrease in autumn, the bugs find 
shelters in the upper litter layer and their diapause is gradually terminated. The bugs then 
remain in state of low temperature quiescence during winter and resume their activities when 
the temperature increases in spring (Sláma, 1964; Hodek, 1968, 1983; Hodková, 1999; Košťál 
& Šimek, 2000; Košťál et al., 2004a,b). 
 
Overwintering P. apterus does not tolerate freezing of its body fluids and relies on supercooling 
strategy with mean SCP of approximately -17°C, with large individual variability ranging from 
-12°C to -23°C. Diapause is an essential prerequisite for overwintering in P. apterus, because 
non-diapausing beetles are not capable of cold acclimation nor do they accumulate any polyols 
(Šlachta et al., 2002). Only diapausing P. apterus, when exposed to temperatures below 5°C, 
can accumulate polyols, which probably function as non-colligative cryoprotectants (Košťál 
and Šlachta, 2001; Košťál et al., 2001).  
 
 
1.4.4. Fruit fly 

The genus Drosophila as well as the whole family Drosophilidae is thought to have a tropical 
origin, but later spread to other climatic zones. Its members now inhabit wide range of 
environments from the tropics to the edges of tundra. Species of Drosophila are a part of 
saprophytic food chains, because in their immature life stages they depend on organisms 
causing fermentation (Throckmorton, 1975). The fruit fly Drosophila melanogaster has been 
one of the favorite model organisms, since Thomas Hunt Morgan decided to use it for his 
research regarding chromosomal theory of inheritance at the beginning of 20th century (Kohler, 
1994).  
 
D. melanogaster is relatively easy and cheap to rear in the laboratory. Its life cycle duration is 
temperature dependent and lasts about 10 days at 25°C (Demerec and Kaufman, 1967). The 
larval development consists of three stages. 
 
Most of the recent species of Drosophila still have tropical and/or subtropical distributions and 
are chill susceptible (Kohler, 1994). The development of immature stages of D.melanogaster 
halts at temperatures below 10°C (Loeb and Northrop, 1917), some mortality occurs below 6°C 
(Bliss, 1927), and all developmental stages die when chilled below −5 °C, even if only for a few 
hours (Czajka and Lee, 1990). Most of the studies on the cold tolerance of D. melanogaster 
focus mainly on cold shock response (Czajka and Lee, 1990; Chen and Walker, 1994; 
Rajamohan and Sinclair, 2009). Košťál et al. (2012) recently showed, that larvae of D. 
melanogaster can even survive partial freezing of their body fluids, when fed with diet 
containing proline and acclimated properly. 
 
 
 
 
 



 

1.5. Aims of research 
 
Paper I: Physiological and biochemical analysis of overwintering and cold tolerance in the 
spruce bark beetle, Ips typographus. 

1) To assess cold tolerance and winter survival in two populations (lowland and highland) of 
spruce bark beetle (Ips typographus) with respect to microhabitat selection. 

2) To test physiological limits for survival at low temperatures. 
3) To measure physiological parameters such as supercooling capacity, osmolality of body 

fluids, relative amount of osmotically active water, thermal hysteresis, sugars and polyols, 
and to examine their relationship to cold tolerance. 

 
Paper II: Seasonal changes of free amino acids and thermal hysteresis in overwintering 
heteropteran insect, Pyrrhocoris apterus. 

1) To extend our knowledge of the complexity of physiological adjustments linked to cold 
tolerance in red firebug (Pyrrhocoris apterus). 

2) To assess the capacity to stabilize the supercooled state by thermal hysteresis factors. 
3) To examine the accumulation of solutes other than polyols, namely free amino acids. 
 
Paper III: Long-term cold acclimation extends survival time at 0°C and modifies the 
metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. 

1) To examine the influence of long-term acclimation on the development of indirect chilling 
injuries in third-instar larvae of the fruit fly (Drosophila melanogaster). 

2) To assess the influence of long-term acclimation on ability to survive freezing injury. 
3) To examine if long-term acclimation modifies the metabolomic profiles of organic acids, 

free amino acids, free fatty acids, sugars, and polyols and stimulates restructuring of 
biological membranes. 

 
Paper IV: Overwintering strategy and mechanisms of cold tolerance in the codling moth 
(Cydia pomonella). 

1) To assess cold tolerance and the mortality caused by winter cold in the larvae of Central 
European population of codling moth (Cydia pomonella) on tree trunks and in litter layer. 

2) To assess the capacity for survival in supercooled and partially frozen state. 
3) To measure changes in water content and energy reserves during overwintering. 
4) To measure physiological parameters such as supercooling capacity, thermal hysteresis, 

osmolality of body fluids, and to perform a detailed metabolomic analysis of organic acids, 
amino acids, sugars, polyols and free fatty acids end to examine their relationship to cold 
tolerance. 
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Overwintering success is one of the key aspects affecting the development and outbreaks of the spruce

bark beetle, Ips typographus (L.) populations. This paper brings detailed analysis of cold tolerance, and its

influence on overwintering success, in two Central European populations of I. typographus during two

cold seasons. Evidence for a supercooling strategy in overwintering adults is provided. The lower lethal

temperature corresponds well to the supercooling point that ranges between �20 and �22 8C during

winter months. The supercooled state is stabilized by the absence of internal ice nucleators and by

seasonal accumulation of a mixture of sugars and polyols up to the sum concentration of 900 mM. The

cryoprotective function of accumulated metabolites is probably based on increasing the osmolality and

viscosity of supercooled body fluids and decreasing the relative proportion of water molecules available

for lethal formation of ice nuclei. No activity of thermal hysteresis factors (stabilizers of supercooled

state) was detected in hemolymph. Lethal times for 50% mortality (Lts50) in the supercooled state at�5,

�10 or�15 8C are weeks (autumn, spring) or even months (winter), suggesting relatively little mortality

caused by chill injury. Lts50 at�15 8C are significantly shorter in moist (6.9 days) than in dry (>42 days)

microenvironment because there is higher probability of external ice nucleation and occurrence of lethal

freezing in the moist situation.
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Overwintering adults of Pyrrhocoris apterus do not tolerate freezing of their body fluids and rely on a
supercooling strategy and seasonal accumulation of polyols to survive at subzero body temperatures. We
sampled the adults monthly in the field during the cold season 2008–2009 and found active thermal
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Abstract

Background: Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct
chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately 25uC) exhibits relatively low
plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few
degrees at the maximum.

Principal Findings: We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-
instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25uC with those acclimated at constant
15uC followed by constant 6uC for 2 d (15uCR6uC) showed that long-term cold acclimation extended the lethal time for
50% of the population (Lt50) during exposure to constant 0uC as much as 630-fold (from 0.137 h to 86.658 h). Such marked
physiological plasticity in Lt50 (in contrast to LLT) suggested that chronic indirect chilling injury at 0uC differs from that
caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of
proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring
of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glyceropho-
sphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glyceropho-
sphocholines.

Conclusion: Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation
and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring.
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Abstract 

Background: The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. Fully grown last 
instar larvae overwinter in diapause state. Their overwintering strategies and physiological principles of cold 
tolerance have been insufficiently studied. No elaborate analysis of overwintering physiology is available for 
European populations. 
Principal findings: We observed that codling moth larvae of a Central European population prefer to overwinter 
in the microhabitat of litter layer near the base of trees. Reliance on extensive supercooling, or freeze-avoidance, 
appears as their major strategy for survival of the winter cold. The supercooling point decreases from 
approximately -15.3°C during summer to -26.3°C during winter.  Seasonal extension of supercooling capacity is 
assisted by partial dehydration, increasing osmolality of body fluids, and the accumulation of a complex mixture 
of winter specific metabolites. Glycogen and glutamine reserves are depleted, while fructose, alanine and some 
other sugars, polyols and free amino acids are accumulated during winter. The concentrations of trehalose and 
proline remain high and relatively constant throughout the season, and may contribute to the stabilization of 
proteins and membranes at subzero temperatures. In addition to supercooling, overwintering larvae acquire 
considerable capacity to survive at subzero temperatures, down to -15°C, even in partially frozen state. 
Conclusion: Our detailed laboratory analysis of cold tolerance, and whole-winter survival assays in semi-natural 
conditions, suggest that the average winter cold does not represent a major threat for codling moth populations. 
More than 83% of larvae survived over winter in the field and pupated in spring irrespective of the overwintering 
microhabitat (cold-exposed tree trunk or temperature-buffered litter layer). 



 

 

3.   Summary of results and conclusions 
 

Paper I: Physiological and biochemical analysis of overwintering and cold tolerance 
in the spruce bark beetle, Ips typographus. 

Cold tolerance and winter survival with respect to microhabitat selection 
Our data suggest that low winter temperatures themselves only seldom represent an important 
mortality factor for Central European populations of I. typographus. Beetles that were sampled 
during the end of summer and the course of autumn (August–November) 2008 showed 
relatively low levels of cold tolerance. By the beginning of winter (December), survival at sub-
zero temperatures increased considerably in both populations, while survival at an above-zero 
temperature either remained relatively low (lowland) or increased less conspicuously 
(highland). The maximum levels of cold tolerance at sub-zero temperatures were achieved 
during the winter months (December–February, March). A spring loss of cold tolerance was 
apparent in the population sampled in the lowland, but not in the highland, where March 
temperatures remained relatively low. 
The overwintering success in microhabitats with high moisture (litter and moss, under bark of 
fallen trees) may be negatively influenced by relatively high risks of lethal nucleation by 
external ice. The survival at longer exposure times was markedly lower in moist than in dry 
conditions, which provides an additional explanation why most beetles prefer overwintering 
sites on standing trees over litter. 

Physiological and biochemical parameters of cold tolerance 
Lower lethal temperature  corresponds  to  the  beetle  supercooling  point  which  ranges  
between -20 and  -22°C during winter. Beetles collected during the end of summer (August) 
displayed relatively low supercooling capacity (lowland, average SCP = -11.7 °C; highland, 
average SCP = -12.1 °C). SCPs then gradually decreased during autumn and reached a seasonal 
minimum during winter (ranging between -20 and -22 °C during December–March in both 
populations). Spring (April) beetles lost their high supercooling capacity (lowland, average SCP 
= -6.6 °C; highland, average SCP = -8.6 °C). Osmolality of hemolymph followed a seasonal 
pattern that was almost reciprocal to SCP. Average values of 335 and 527 mOsm kg-1 were 
measured in lowland and highland, respectively, during the end of summer. Winter maxima 
rose to 1359 and 1582 mOsm kg-1 in lowland and highland, respectively. Spring levels (April) 
were again low: 454 and 401 mOsm kg-1 in lowland and highland, respectively. The osmolality 
of hemolymph tightly correlated with the sum concentration of all sugars and polyols. 

Accumulation of cryoprotectants 
The supercooled state appears to be well stabilized by the absence of internal nucleators and by 
high concentrations of sugars and polyols which increase the osmolality and viscosity of body 
fluids on the one hand and decrease the relative proportion of osmotically active water 
molecules on the other. The levels of trehalose were stable during early autumn, increased 
steeply starting in September (highland) or October (lowland), reached maximum levels during 
winter months and, finally, decreased during spring (a decrease was observed only in the 
sample taken in the lowland). The concentrations of glucose followed a similar seasonal pattern 
as trehalose. Sorbitol, mannitol, erythritol, threitol, fructose (and glycerol during 2009–2010) 
occurred at very low or undetectable levels during autumn, rapidly accumulated during early 



 

winter (December in highland, January in lowland), and were maintained at high levels during 
winter. 

Thermal hysteresis factors and ratio of osmotically active and inactive water 
No signs of thermal hysteresis factors were found in hemolymph of overwintering beetles. The 
fresh mass and hydration of overwintering beetles remained essentially constant. We observed 
significant seasonal changes in the relative proportion of osmotically active (OA) vs. inactive 
(OI) water. Beetles collected during August 2010 showed a relatively high proportion of OA 
water (74 %), which then decreased to 55 - 60 % during the winter months. 
 
 

Paper II: Seasonal changes of free amino acids and thermal hysteresis in 
overwintering heteropteran insect, Pyrrhocoris apterus. 

Stabilization of supercooled state by thermal hysteresis factors 
We detected active thermal hysteresis factors (THFs) to be present consistently in all winter-
collected adults of P. apterus, while no signs of THFs activity were found in the autumn- and 
spring-collected insects. The average levels of THFs activity was relatively low, ranging from 
0.18°C to 0.30°C, which is not sufficient to significantly extend the supercooling capacity of P. 
apterus. 

Accumulation of free amino acids 
We found that free amino acids accumulate in overwintering adults of P. apterus, however, their 
contribution to the observed change in hemolymph osmolality is relatively small, up to 20 
mOsm. The total free amino acid pool almost doubled during winter time compared to early 
September in both hemolymph and whole body samples. Three amino acids, Proline, α-Alanine 
and Glutamine, represented between 48 and 67 % of the total amino acid pool. The levels of 
Proline and α-Alanine increased with the progression of cold season, peaked during winter, and 
decreased during early March. Concentration of Glutamine showed a reciprocal trend with a 
broad minimum during winter. 
 
 

Paper III: Long-term cold acclimation extends survival time at 0°C and modifies the 
metabolomic profiles of the larvae of the fruit fly Drosophila melanogaster. 

Effect of long-term acclimation on survival at low temperatures 
We observed a clear effect of relatively low rearing temperature of 15°C on subsequent survival 
at low temperatures in 3rd instar larvae. Survival of the 15°C acclimated  larvae further 
improved on exposure to 6°C for 2 days. The larvae did not show survival ability in conditions 
favorable for external ice inoculation and partial freezing of their body fluids. None of the 
larvae survived cooling to -5°C when freezing of the surrounding diet was stimulated by adding 
a small ice crystal. In contrast, relatively high proportions of the larvae survived cooling to -5°C 
under the supercooling conditions. However, acclimation at 15°C or 15°C → 6°C was a 
prerequisite for their survival in supercooled state. 

Effect of long-term acclimation on metabolomic profiles and restructuring of membranes 
Almost two-thirds of the 39 major metabolites identified in this study exhibited statistically 
significant concentration changes in response to long-term cold acclimation. Most of the 



 

 

changes, however, were relatively small and rarely reached a several-fold magnitude. Two 
compounds, trehalose and proline, were present in relatively high amounts (>10mM) and 
showed a positive association with increasing cold acclimation. 
Long-term cold acclimation stimulated small but statistically significant changes in the lipid 
composition of biological membranes in D. melanogaster larvae. The relative proportion of 
unsaturated FAs and the length of FA chains did not change significantly with cold acclimation. 
The relative proportion of GPEtns was significantly lower in the 25°C- and 15°C-acclimated 
larvae than in the 15 °C → 6°C-acclimated larvae. 
In both the larvae and the adults of D. melanogaster, the most prominent change related to cold 
acclimation was the increase in the relative proportion of GPEtns with linoleic acid (FA 18:2) 
esterified at the sn-2 position of glycerol. 
 
 

Paper IV: Overwintering strategy and mechanisms of cold tolerance in the codling 
moth (Cydia pomonella). 

Overwintering sites, cold tolerance and the mortality caused by winter cold 
Our data suggest that low temperatures do not represent a major threat for codling moth 
populations, when considering the conditions of an average winter. The cold tolerance in field 
collected larvae increased gradually with seasonal time and remained at high level until spring. 
The larvae survived equally well in the litter layer (86.1% survival) and on tree trunks (83.6% 
survival). When considering the conditions of an extremely cold winter, the survival rate would 
most likely be zero, provided Codling moth larvae overwinter in the exposed microhabitats of 
tree trunks. We believe, however, that larger parts of Central European populations prefer 
overwintering sites in the buffered microhabitat of the litter layer. 

Survival in supercooled and partially frozen state 
Our study confirms supercooling as the main strategy of cold tolerance but also shows that the 
overwintering larvae of C. pomonella possess a good physiological capacity for freeze-
tolerance. The July-collected non-diapause larvae displayed relatively low capacity to tolerate 
subzero temperatures. They also did not tolerate freezing of their body fluids. In diapausing 
larvae, the cold tolerance increased gradually with seasonal time and reached a broad plateau 
between November and April. The capacity to tolerate freezing was first observed in 
November-collected larvae and, later, it stayed very high, ranging between 75-100%, until 
spring. 

Water content and energy reserves during overwintering 
We found that larvae of codling moth gradually lose water during overwintering. This partial 
dehydration contributes to the increase of body fluids' osmolality that, in turn, correlates with 
the decrease of SCP. During the almost 6-month-long overwintering period from November to 
April, the larvae displayed considerable losses of fresh mass (average loss of 43.0% of initial 
FM), dry mass (43.8%), total lipids (46.0%) and water (56.8%). Despite these losses in absolute 
units, the relative contents of water and total lipids remained almost unchanged: water, 61.9% 
in Nov vs. 61.7% in Apr; total lipids, 11.7% in Nov vs. 11.1% in Apr. 
Whole-body glycogen content was approximately half in July-collected non-diapause 
caterpillars when compared to September-collected diapausing caterpillars. High levels of 



 

glycogen were maintained during the whole autumn. Practically all glycogen deposits were 
depleted between November and January, and partially re-accumulated during the spring. 
 

Physiological and biochemical parameters of cold tolerance 
The osmolality of hemolymph was relatively low (252 mosmol kg-1) in July-collected non-
diapause larvae. In diapausing larvae, the osmolality gradually increased during autumn from 
370 mosmol kg-1 in September to a broad maximum of 667 - 665 mosmol kg-1 in January - 
March, respectively. The April-collected larvae exhibited a slight decrease of osmolality to 414 
mosmol kg-1. Supercooling capacity was relatively low in the July-collected non-diapause 
larvae. The SCP gradually decreased with seasonal time, reached a minimum during March (-
26.3°C), and also remained very low in the April-collected caterpillars. The correlation 
between hemolymph osmolality and whole body supercooling point (SCP) was close to 
statistical significance. 
No thermal hysteresis was detected in the non-diapause larvae, and extremely low (ranging 
between 0.07°C to 0.11°C) in hemolymph samples of winter collected larvae.  
Accumulation of several metabolites, dominated by fructose and alanine, represents an 
additional source of increasing osmolality/decreasing SCP in overwintering larvae of codling 
moth. The concentration of trehalose was relatively high and more or less stable. The levels of 
fructose, glucose, sorbitol and mannitol, appeared in high concentrations between November 
and January but were almost completely cleared between March and April. Total pool of free 
amino acids increased during winter and alanine contributed most to the winter peak. Proline 
was the second most abundant amino acid and its seasonal pattern resembled that of trehalose - 
relatively stable. 
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