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host switching.
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Chapter 1. General introduction of the Myxozoa

1.1. Myxozoan origins: From protists to cnidarians

The Myxozoa Grassé, 1970, are diverse metazoan parasite group with an
extremely simplified and parasitism-adapted morphology. After the first report
from a now extinct salmonid fish, Coregonus fera Jurine 1825, from Lake Geneva,
Switzerland around 200 years ago (Jurine 1825), the Myxozoa today encompass
approximately 2400 species (Zhang 2011).

Initially, myxozoans were grouped with different protist taxa
(Microsporidia and Apicomplexa) within the former groups of Cnidospora Doflein,
1901 and Sporozoa Leuckart, 1879 (Butchli 1882; Dogiel 1965). The multicellular
nature of myxozoan spores recognized by Stolc (1899) was confirmed by
ultrastructural studies (Grassé & Lavette 1978) and later by molecular data which
placed the Myxozoa firmly into the Metazoa (Smothers et al. 1994; Katayama et al.
1995; Siddall et al. 1995; Schlegel et al. 1996).

Once rediscovered and identified as a myxozoan (Anderson et al. 1998) the
peculiar vermiform and allegedly triploblast stage of Buddenbrockia plumatellae
Schroder, 1910 containing four blocks of muscles (Schroder 1910, Jiménez-Guri et
al. 2007a) was suggested to be the missing link between myxozoans and their
bilaterian ancestors (Canning et al. 2002; Okamura et al. 2002; Okamura & Canning
2003). However, bilateral affinity of the Myxozoa based on the presence of four
hox genes (Anderson et al. 1998) was later ruled out after confirming host
contamination (Jiménez-Guri et al. 2007a). Moreover, mesodermal-like muscle cells
typical for Buddenbrockia have also been reported from cnidarians (Seipel &
Schmid 2006; Technau & Scholz 2003; Burton 2008). Morphologically similar
myxozoan polar capsules and cnidarian nematocysts (Weill 1938) were later
confirmed as homologous features (Siddall et al. 1995) as they both contain
cnidarian-specific nematocyst proteins such as minicollagens (Holland et al. 2011;
Feng et al. 2014) and nematogalectins (Shpirer et al. 2014; Kyslik 2016). Shared
ancestry of genes as well as the tetraradial symmetry of B. plumatellae firmly
placed the Myxozoa within the Cnidaria (Jimenéz-Guri 2007a; Gruhl & Okamura
2012). Based on multiple protein-coding gene analyses, the Myxozoa were placed
sister to the Medusozoa (Jimenéz-Guri et al. 2007a; Collins 2009; Holland et al.
2011; Nesnidal et al. 2013; Feng et al. 2014; Shpirer et al. 2014). A more recent
analysis placed the Myxozoa as a sister group to Medusozoa, together with another
enigmatic fish parasite of cnidarian origin, Polypodium hydriforme Ussov, 1885
(Chang et al. 2015; Okamura & Gruhl 2016).

1.2. Classification and phylogenetics

After the discovery of an indirect myxozoan life cycle, myxosporeans and
actinosporeans (previously sister class organisms) were considered conspecific,
representing two distinct phases of single life cycle (Wolf & Markiw 1984; Kent et
al. 1994; Wolf et al. 1986). Myxosporea became the valid representative under
phylum Myxozoa and Actinosporea was suppressed (Kent et al. 1994).
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Presently, based on spore morphology and invertebrate host types, the
Myxozoa are divided into two classes (Kent et al. 2001): the Myxosporea Butschli
1881, with hard spore valves and annelid definitive hosts, and the Malacosporea
Canning, Curry, Feist, Longshaw et Okamura 2000, with soft spore valves and
bryozoan definitive hosts. In the two myxozoan classes, spore morphology in
invertebrate (definitive) and vertebrate (intermediate) hosts differs considerably.
Myxosporeans form two types of spores during their life cycle: myxospores in the
vertebrate host and actinospores in the invertebrate host. In malacosporeans,
insufficient records exist for soft-walled spores in the fish host since they are rarely
detected (Kent & Hedrick 1986; Kent et al. 2000; Hedrick et al. 2004; Morris &
Adams 2008; Bartosova-Sojkova et al. 2014: Paper Il). For this reason,
malacosporean classification, in contrast to the myxosporean one is based mostly
on morphological data from malacospores from their bryozoan host. The Myxozoa
currently consist of 67 genera from 19 families (based on Lom & Dykova 2006; Fiala
et al. 2015a and additional information included from Freeman & Kristmundsson
2015; Yang et al. 2017; Figure 1), with only two genera and one family described
from malacosporeans.

Phylum Cnidaria
Unranked
Myxozoa

subphylum | )
Class Myxoslporea Malacosporea

(harder spore valrfes, annelid host) (softer spore valves, bryozoan host)
Order Biva\{.'ulida Multivallvulida Malacovalvulida

(two spore valves) (three to seven spore valves)
[ . 1
Suborder Variisporina Platysporina
(polar capsules perpendicular  (one polar capsule lies on
to the sutural line plane, the sututre line plane,

mostly coelozoic) mostly Tstoznic)

Family Alatosporidae Myxobolidae Kudoidae Saccosporidae
(Alatospora, (Myxobolus, Spirosuturia, (Kudoa) (Buddenbrockia,
Pseudoalatospora, Renispora) Unicauda, Dicauda, Spinavaculidae Tetracapsuloides)
Ceratomyxidae Phlogospora, Laterocaudata,  (Octospina)

(Ceratomyxa, Ceratonova, Henneguya, Hennegoides, Trilosporidae
Ellipsomyxa, Meglitschia, Tetrauronema, Thelohanellus, (Tritospora, Unicapsula)
Unicapsulocaudum) Neothelohanellus,

Chloromyxidae Neohenneguya, Trigonosporus)

(Chloromyxum,

Caudomyxum, Agarella) Incertae sedis
Coccomyxidae (Coccomyxa, Auerbachia, Globospora) In Multivalvulida: Trilosporoides
Gastromyxidae (Gastromyxum)

Fabesporidae (Fabespora)

Monomyxidae (Monomyxum)

Myxobilatidae® (Myxabilatus, Acauda, Hoferellus)

Myxidiidae (Myxidium, Zschokkella, Enteromyxum, Sigmomyxa, Soricimyxum, Cystodiscus)
Ortholineidae® (Ortholinea, Neomyxobolus, Cardimyxobolus, Triangula, Kentmoseria)
Parvicapsulidae (Parvicapsula, Neoparvicapsula, Gadimyxa)

Sinuolineidae (Sinuolinea, Myxodavisia, Myxoproteus, Bipteria, Paramyxoproteus,
Neobipteria, Schulmania, Noblea, Latyspora)

Sphaeromyxidae (Sphaeromyxa)

Sphaerosporidae (Sphaerospora, Wardia, Palliatus)

Figure 1: Schematic diagram of the classification of the Myxozoa up to the genus level
based on Lom & Dykova (2006) and Fiala et al. (2015a). # = taxonomic transfer or
demise of the family (Karlsbakk et al. 2017) is not included.



Kudo (1933) and Tripathi (1948) proposed the first systematic key for the
classification of the Myxosporea. The most significant classification proposed by
Shul’'man (1966) is widely valid to date. Lom and Arthur (1989) provided the first
guidelines for fishborne myxosporean descriptions, with focus on spore
morphology. Revised classifications (Lom & Noble 1984; Lom & Dykova 1992; 2006;
Canning & Okamura 2004) resulted in the selection of important morphological
features for describing a new species: a) shape and size of spore, b) number of shell
valves and sporoplasms, c) position and shape of suture line, d) presence or
absence of surface ridges, projections, caudal appendages and mucous envelope,
e) number, shape, orientation and size of polar capsules, f) number of polar
filament turns within the polar capsule, g) characteristics of spore-forming
plasmodia, and, h) final site of the infection.

Alongside morphological features, it is nowadays inacceptable to publish a
new species description without providing small subunit ribosomal DNA (18S rDNA)
sequence data. When the first 18S rDNA sequences of myxozoans were published
in the 1990s (Smothers et a. 1994), it soon became clear that phylogenetic
clustering conflicts traditional myxozoan taxonomy (Holzer et al. 2004; Fiala 2006;
BartoSova & Fiala 2011; Rocha et al. 2013; Karlsbakk et al. 2017). At present,
approximately 770 species have been characterized based on their 18S rDNA,
which has become the most commonly used molecular marker (barcode) for
myxozoans. According to the most recent phylogenetic analyses, 15 genera are
para-/polyphyletic, though various genera are molecularly under-represented
either without any molecular data or with single nominal representatives
sequenced. As the morphology does not completely reflect phylogenetic clustering,
other factors are responsible for shaping the evolution of the Myxozoa. Several
biological traits correspond with the phylogenetic clustering to some degree: 1)
localisation within the host tissue (Holzer et al. 2004; Fiala 2006; Hartigan et al.
2011; Shin et al. 2014; Rocha et al. 2013; 2015; Azizi et al. 2016), 2) aquatic habitat
(marine, freshwater or brackish; Fiala 2006; Jirk( et al. 2011; Bartosova et al. 2013;
Azizi et al. 2016; Aguiar et al. 2017), 3) invertebrate host (bryozoan, polychaete or
oligochaete; Holzer et al. 2007; Fiala et al. 2015a), 4) fish host family (Gunter &
Adlard 2009; Gunter et al. 2009; Alama-Bermejo et al. 2011; Carriero et al. 2013;
Naldoni et al. 2015; Leis et al. 2017), 5) sporogenesis (Morris & Adams 2008), and
6) geography (Whipps et al. 2003; Henderson & Okamura 2004; Whipps & Kent
2006; Liu et al. 2016).

According to 18S rDNA phylogenetic analyses, the Myxozoa are broadly
divided into four major clades: 1) the most basal malacosporean clade and three
myxosporean clades including 2) the Sphaerospora sensu stricto (s. s.) clade, 3) a
predominantly marine, polychaete-infecting clade of myxosporeans and, 4) a
predominantly freshwater, oligochaete-infecting clade of myxosporeans (Fiala
2006; Fiala et al. 2015a; Figure 2). Sphaerospora s. s. species have some of the
longest 18S rDNA (up to 3.7 kbp) within eukaryotes and they predominantly cluster
in a well-separated lineage at the base of all myxosporeans (Fiala 2006; Holzer et
al. 2007; 2010; BartoSova et al. 2013; Fiala & Bartosova 2010; U-taynapun et al.
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2012; Fiala et al. 2015a) though some analyses placed this clade sister to the
marine myxosporean lineage (Karlsbakk & Kgie 2009; Holzer et al. 2013g;
Eszterbauer et al. 2013; BartoSova et al. 2013).

| Coelozoic group
Freshwater ; - -
Histozoic group T
glaal":hdde' Freshwater  Marine Coelozoic group.
chloromyxid chloromyxid S
clade clade Mlagcacs . Mari
Enteromyxum Marine urinary e
% Myxidium
o clade clade \ad
Myxidium clade  ceratomyxa,
Illelzerkuehnl Ceratonova clade
cace clade I
| Freshwater ",
. urinary
\clade i
ﬂ‘ Marine
Myxobolus N
i Freshwater _lineage
lineage Polychaete
Oligochaete final host
a final host
Histozoic group
Sphaerosporid
lineage
MYXOSPOREA
Final host 222
}f_t
@mmmy Freshwater environment —
MALACOSPOREA
@=my Marine environment B e S e
7 : Bryozoan final host
s, Terrestrial environment

Figure 2: Summary of hypothetical evolution of the Myxozoa inferred from molecular data
based on various studies (Fiala et al. 2015b).

High divergence of the 18S rDNA variable regions is indicative for a fast
evolution of the myxozoans (Jiménez-Guri et al. 20073, Evans et al. 2010, Chang et
al. 2015, Takeuchi et al. 2015). This can result in problems during sequence
alignments and potential errors in phylogenetic analyses. Other molecular markers
like the large subunit ribosomal DNA (28S rDNA) and elongation factor 2 (EF2)
supported the phylogenetic clustering of myxozoans based on the 18S rDNA
(BartoSova et al. 2009; Fiala & Bartosova 2010; Hartikainen et al. 2014; Atkinson et
al. 2015). Highly variable internal transcribed spacer region 1 proved as a suitable
marker for inferring myxozoan relationships at the subspecies level, for example for
phylogeographical studies (Henderson & Okamura 2004; Whipps & Kent 2006),
whereas the more conservative heat shock protein 70 is appropriate for studies at
the interspecific or phylum level (Andree et al. 1999; Whipps et al. 2004a).

With the increasing number of entries of myxozoan 18S rDNA sequences in
Genbank and knowledge of their phylogenetic positioning, suppression or erection
of genera, species or even families have been performed various times. The genera
Pentacapsula (Naidenova et Zaika, 1970), Hexacapsula (Arai et Matsumoto, 1953)



and Septemcapsula (Hsieh et Chen, 1984) possessing five, six and seven spore
valves, respectively, were transferred to a single genus Kudoa Meglitsch, 1947,
originally defined to have four spore valves (Whipps et al. 2004b). The genus
Leptotheca (Thélohan, 1895) harbouring 74 species was demised and its
representatives were transferred to other genera, based on host tissue localisation
and spore morphology: gall bladder-infecting species were absorbed in Ceratomyxa
Thélohan, 1892, urinary system-infecting species were shifted to Sphaerospora
Thélohan, 1892 and two other representatives were incorporated within
Ellipsomyxa Kgie, 2003 and Myxobolus Biitschli, 1882 (Gunter & Adlard 2010),
despite lacking molecular data of most Leptotheca spp. including that of its type
species Leptotheca agilis (Thélohan, 1892). However, solutions for many
paraphyletic genera are not easily found and it is yet to be decided how to proceed
with adapting a more realistic systematic system without having to rely on
molecular data only.

1.3. Life cycle and development

Since the revolutionary discovery of the myxozoan two-host life cycle
(Wolf & Markiw 1984; Wolf et al. 1986), Myxozoa are generally considered to have
an indirect life cycle that alters between an invertebrate host (annelid or bryozoan)
and a vertebrate host, mostly fish (Figure 3).

_—"___g Fish host

Waterborne
myxospore/
fishmalacospore

Waterborne actinospore/
malacospore

Annelid/bryozoan host

Figure 3: Schematic diagram of an indirect myxozoan life cycle between a fish host
and an aquatic annelid or a bryozoan host (modified from Eszterbauer et al. 2015).



Actinospores are formed within the invertebrate host, by definition the
definitive host (meiosis takes place within the gametocytes). Myxospores are
formed within the vertebrate (intermediate) host. Known invertebrate hosts for
myxosporeans are usually annelids: for myxosporeans in freshwater habitats
generally oligochaetes, for those in marine environments usually polychaetes and
rarely sipunculids (lkeda 1912). Malacosporeans use freshwater Bryozoa belonging
to the Phylactolaemata as invertebrate hosts and fish as vertebrate hosts. Teleost
and cartilaginous fishes (Dykova & Lom 1982) are the most common vertebrate
hosts for myxosporeans, while few records exist from amphibians, reptiles, birds
and mammals including human (Eiras 2005; Jirk(l et al. 2007; Prunescu et al. 2007;
Bartholomew et al. 2008; Kawai et al. 2012; Ohnishi et al. 2013; Székely et al. 2015,
Hartigan et al. 2016a) and few exceptional invertebrates including Monogenea and
Cephalopoda (Yokoyama & Masuda 2001; Freeman & Shinn 2011). To date 53
myxozoan life cycles are known, of which 38 are confirmed by molecular data from
both hosts (Table 1). In contrast to 42 life cycles having oligochaete definitive hosts,
only eight life cycles involve polychaetes and, three are known from bryozoans. It is
unclear how myxozoans in terrestrial vertebrates complete their life cycle (Eiras
2005) but infection may occur by consumption of infected oligochaetes
(earthworms) (Dykova et al. 2011) or spiders (Hallett et al. 2015).

Myxozoans are one of the supreme examples of morphological
simplification to endoparasitism and reduction of body complexity to only a few
cells throughout their life cycle. Spores are the most characteristic feature.
Actinospores are usually larger, soft-shelled, with triradiate symmetry, consisting of
three polar capsules, three valve cells and one multinuclear sporoplasm (Kent et al.
2001; Lom & Dykova 2006; Morris 2010; 2012). Valve cells often form long floating
appendages. Myxospores generally consist of one to four capsulogenic cells
(exceptionally 13—15 in Kudoa quadricornis Whipps, Adlard, Bryant et Kent, 2003 or
Kudoa permulticapsula Whipps, Adlard, Bryant et Kent 2003), two to four
valvogenic cells (with same exceptions as before) and 2-12 uninucleated
sporoplasms (Lom & Noble 1984; Sitja-Bobadilla & Alvarez-Pellitero 1995;
Bartosova et al. 2013), or a single binucleated sporoplasm (Lom & Dykova 1992;
Sitja-Bobadilla & Alvarez-Pellitero 1994). Polar capsules are formed from
capsulogenic cells harbouring a coiled polar filament.

The cellular composition of the Malacosporea differs significantly from
that of the Myxosporea. Malacospores found in the bryozoan coelom have eight
shell valves, four polar capsules and two sporoplasms with secondary cells (Canning
& Okamura 2004; Feist et al. 2015), while fish-malacospores have two or four valve
cells, two polar capsules and one uninucleated sporoplasm devoid of any
secondary cells (Kent & Hedrick 1986; Kent et al. 2000; Hedrick et al. 2004; Morris
& Adams 2008; Feist et al. 2015).

Host recognition in myxozoans is based on the molecule inosine present in
fish mucus (Kallert et al. 2005a; 2011). Actinospores expel their polar filaments and
consequently the spore ruptures along the suture between the shell valves
initiating the release of the sporoplasm and its entry into fish via mucus cells or
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epithelia in general (EI-Matbouli et al. 1999; Kallert et al. 2011). Following hosts’
invasion by the sporoplasms, asexual multiplication produces numerous
presporogonic stages before reaching the target organ where sporogony takes
place. Myxozoans show a unique cell-in-cell development where a primary cell
contains one to many secondary and later tertiary cells. Primary cells break up and
liberate secondary-tertiary cell doublets, which start proliferation over.

Limited knowledge exists about the complete intrapiscine development of
myxozoans (EI-Matbouli et al. 1995a; Holzer et al. 2003; Morris & Adams 2008;
Bjork & Bartholomew 2010). Extrasporogonic, proliferative blood stages are known
from a number of Sphaerospora s. s. spp. (Baska & Molndr 1988; Lom et al. 1985;
1991; Molnar 1994; McGeorge et al. 1997; Paperna & Cave 2001; Holzer et al.
2003). In contrast to proliferation in the blood which seems to be limited to
sphaerosporids, the blood stream appears to be commonly used by myxozoans as
means of transport to the target organ for sporogenesis (Johnson 1980; Kent &
Hedrick 1985; Moran et al. 1999a; b; Bjork & Bartholomew 2010; Holzer et al.
2013b: Paper |; Holzer et al. 2014: Paper Ill). In contrast, Myxobolus cerebralis
Hofer, 1903 migrates to the cartilage of brain and vertebras via nerve fibers,
avoiding an immunological reaction of the host (EI-Matbouli et al. 1995a).

In general, myxozoan sporogony is initiated within plasmodia in the target
organ. These are categorized into large plasmodia (multiple vegetative nuclei,
numerous spores) or pseudoplasmodia (single vegetative nuclei, 1-2 spores) (Kent
et al. 2001; Canning & Okamura 2004) and are either histozoic (in tissues, e.g.
muscle, gills, liver, skin, kidney and testes) or coelozoic (in body/organ cavities, e.g.
renal tubules, urinary bladder, gall bladder and biliary ducts). Sporogonic cells
within plasmodia further divide into the different spore-forming cell types:
capsulogenic, valvogenic and sporoplasmogenic cells. Fully formed mature spores
are then released from the vertebrate host and settle in aquatic sediments until
taken up by the invertebrate host.

After ingestion of myxospores by the invertebrate host, the polar filaments
are extruded thus attaching the spore to the hosts’ surface, valve cells split along
the spore’s suture line to release sporoplasms and initiate proliferation, similar as
in the vertebrate host. After initiation of sporogenesis following proliferation,
haploid sporoplasms multiply and later fertilize to produce pansporocysts within
which haploid a somatic cell and B gametic cell unite to form four or more often
eight diploid zygotes (Morris 2012). Further multiplication produces capsulogenic,
valvogenic and sporoplasmogenic cells. At the end of the cell division, four (e.g.
Tetraspora discoidea Hallett et Lester, 1999 and Tetraspora rotundum, Hallett et
Lester, 1999) (Hallett & Lester 1999) or mostly eight actinospores are formed
within one pansporocyst (Kent et al. 2001; Lom & Dykova 2006). Actinospores are
produced within different areas of the host body (body wall; Bartholomew et al.
1997; digestive epithelium; EI-Matbouli & Hoffmann 1998; coelomic cavity; Rangel
et al. 2009). In contrast to myxosporeans, malacosporean development occurs
within the coelom of freshwater bryozoans. Spore-forming stages are relatively



large and of three types: 1) spherical/sub-spherical sacs, 2) elongate motile
vermiform stages and 3) lobe-like stages (Hartikainen et al. 2014).

A few exceptions are known to the general actinosporean-myxosporean

life cycle of myxozoans. The genus Enteromyxum Palenzuela, Redondo et Alvarez-
Pellitero, 2002, is the only genus known to be transmitted from fish-to-fish by
dislodging host cells with intracellular developmental stages from the digestive
epithelia of the fish host that are released with faeces and can infect receptor fish
(Diamant 1997; Redondo et al. 2002). This direct and fast fish-to-fish transmission
of the parasite causes huge economic losses in aquaculture (Diamant et al. 2006;
Fleurance et al. 2008). However, the alternative existence of an invertebrate host
as a part of the Enteromyxum life cycle cannot be ruled out (Redondo et al. 2004)
due to the relatively recent finding of an actinospore type belonging to the
Enteromyxum clade (Rangel et al. 2011).
Vertical propagation of myxozoans was reported in few other species and only
from their invertebrate hosts. An undescribed myxozoan (triactinomyxon
actinospore) and Myxobilatus gasterostei (Parisi, 1912) Davis, 1944 from the
oligochaetes Lumbriculus variegatus (Muller, 1774) and Nais communis Piguet,
1906, respectively, produced new individuals with actinospores by fragmentation
(asexual reproduction) of infected hosts (Morris & Adams 2006a; Atkinson &
Bartholomew 2009). Colonial fragmentation of the bryozoans Lophopus crystallinus
(Pallas, 1766) and Fredericella sultana (Blumenbach, 1779) infected with
Buddenbrockia allmani Canning, Curry, Hill, Okamura, 2007 and another
malacosporean, respectively, were able to produce malacosporean infection in the
new colonies (Morris & Adams 2006a; Hill & Okamura 2007). Moreover, vertical
transmission by statoblasts (asexual unit of bryozoans for surviving during adverse
conditions) was also reported for L. crystallinus and F. sultana infected with B.
allmani and Tetracapsuloides bryosalmonae (Canning, Curry, Feist, Longshaw et
Okamura, 1999), respectively (Hill & Okamura 2007; Abd-Elfattah et al. 2014).
However, these findings still require confirmation as several transmission
experiments using statoblasts from infected colonies failed to infect the emerging
colonies (Grabner & ElI-Matbouli 2008; 2010a).



Table 1: List of complete and partial myxozoan life cycles available to date. Abbreviations used in this table: X = not experimentally transmitted, €-> = complete
life cycle, = and € = partial transmission from one host to another (direction of the arrow shows the transmission pathway), blue = oligochaete host, green =
polychaete host and orange = bryozoan host, * = later proven wrong by Eszterbauer et al. (2006), # = later proven wrong by Holzer et al. (2004). Accession
numbers are only for 18S rDNA available in GenBank, N/A = data not available.

Myxozoan species Invertebrate host Transmission  Vertebrate host Acc. no. Reference
Ceratomyxa auerbachi Kabata, 1962 Chone infundibuliformis X Clupea harengus EU616730, Kgie et al. 2008
EU616733
Ceratonova shasta Noble, 1950 Manayunkia speciosa > Oncorhynchus spp. AF001579 Bartholomew et al. 1997
Chloromyxum auratum Hallett, Atkinson, Holt, Freshwater oligochaete < Carassius auratus AY971521 Hallett et al. 2006;
Banner et Bartholomew, 2006 Atkinson et al. 2007
Chloromyxum schurovi Shul’man et leshko, 2003 Eiseniella tetraedra X Salmo salar, S. trutta AJ582007 Holzer et al. 2006a
Chloromyxum truttae Leger, 1906 Stylodrilus heringianus X Salmo salar, S. trutta AJ582006, Holzer et al. 2004
AJ581916
Ellipsomyxa gobii Kgie, 2003 Nereis spp. > Pomatoschistus microps AY505126-27 Kgie et al. 2004
Ellipsomyxa mugilis (Sitja-Bobadilla et Alvarez- Nereis diversicolor X Mugilidae spp. N/A Rangel et al. 2009
Pellitero, 1993)
Gadimyxa atlantica Kgie, Karlsbakk et Nylund, Spirorbis spp. > Gadus morhua EU163412-13, Kgie et al. 2007
2007 EU163416,
EU163418
Henneguya exilis (Kudo, 1929) Dero digitata X Ictalurus punctatus AF021881 Lin et al. 1999
Henneguya ictaluri Pote, Hanson et Shivaji, 2000 Dero digitata > Ictalurus punctatus AF195510 Pote et al. 2000
Henneguya nuesslini Schuberg et Schréder, 1905 Tubifex tubifex > Salmo trutta, AY669810 Kallert et al. 2005b
Salvelinus fontinalis
Henneguya mississippiensis Rosser, Griffin, Dero digitata X Ictalurus punctatus AF021878 Rosser et al. 2015
Quiniou, Khoo, Greenway, Wise et Pote, 2015
Hoferellus carassii Achmerov, 1960 Nais sp. > Carassius auratus N/A Trouillier et al. 1996
Branchiura sowerbyi > Carassius auratus N/A Yokoyama et al. 1993
Tubifex tubifex > Carassius auratus N/A El-Matbouli et al. 1992
Hoferellus cyprini (Doflein, 1898) Nais sp. < Cyprinus carpio N/A Grossheider &  Korting
1992
Myxidium giardi Cepede, 1906 Tubifex sp. < Anguilla anguilla N/A Benajiba & Marques 1993
Myxidium truttae Léger, 1930 Tubifex tubifex X Salmo trutta AJ582009 Holzer et al. 2004
Myxobilatus gasterostei (Parisi, 1912) Nais communis, X Gasterosteus aculeatus EU861209 Atkinson & Bartholomew
Nais pseudobtusa 2009
Myxobolus arcticus Pugachev et Khokhlov, 1979 Stylodrilus heringianus, > Onchorhynchus nerka, HQ113228 Kent et al. 1993a
Lumbriculus variegatus > Onchorhynchu masou AB353128
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Table 1 continued

Urawa 1994, (Sequences
from Urawa et al. 2011)

Myxobolus bramae Reuss, 1906 Tubifex tubifex < Abramis brama AF507968 Eszterbauer et al. 2000
Myxobolus carassii Klokacewa, 1914 Tubifex tubifex < Leuciscus idus N/A El-Matbouli & Hoffmann
1993
Myxobolus cerebralis Hofer, 1903 Tubifex tubifex > Onchorhynchus mykiss N/A Wolf & Markiw 1984
Myxobolus cotti EI-Matbouli et Hoffmann, 1987 Tubifex tubifex < Cottus gobio N/A El-Matbouli & Hoffmann
1989
Myxobolus cultus Yokoyama, Ogawa et Branchiura sowerbyi > Carassius auratus N/A Yokoyama et al. 1995
Wakabayashi, 1995 HQ613407, Xi et al. 2013
HQ613409
Myxobolus dispar Thélohan, 1895 Tubifex tubifex < Cyprinus carpio N/A Molndr et al. 1999a
Myxobolus diversicapsularis Slukhai, 1984 Tubifex tubifex X Rutilus rutilus AY495708, Molnar et al. 2010
AY325285
Myxobolus drjagini (Akhmerov, 1954) Tubifex tubifex < Hypophthalmichthys N/A El-Mansy & Molndr 1997a
molitrix
Myxobolus erythrophthalmi Molnar, Isochaetides michaelseni X Scardinius KF515727-8 Székely et al 2014
Eszterbauer, Marton, Cech et Székely, 2009 erythrophthalmus
Myxobolus fundamentalis Molnar, Marton, Isochaetides michaelseni X Rutilus rutilus KF515725 Székely et al 2014
Székely et Eszterbauer, 2010
Myxobolus hungaricus Jaczd, 1940 Tubifex tubifex < Abramis brama AF448444 El-Mansy & Molnar 1997b
Myxobolus intimus Zaika, 1965 Tubifex tubifex < Abramis brama N/A Racz et al. 2004
Myxobolus lentisuturalis Dykova, Fiala et Nie, Branchiura sowerbyi X Carassius auratus AY119688 Caffara et al. 2009
2002 auratus
Myxobolus macrocapsularisi Reuss, 1906 Tubifex tubifex < Abramis brama N/A Székely et al. 2002
Myxobolus parviformis Kallert, Eszterbauer, Limnodrilus hoffmeisteri, > Abramis brama AY836151 Kallert et al. 2005c
Erséus, EI-Matbouli et Haas, 2005 Tubifex tubifex
Myxobolus pavlovskii (Achmerov, 1954) Tubifex tubifex S d Hypothalmichtys molitrix ~ N/A Ruidisch et al. 1991
Limnodrilus sp. > Hypothalmichtys molitrix ~ HM991164 Marton & Eszterbauer
2011
Myxobolus portucalensis Saraiva et Molnar, 1990 | Tubifex tubifex > Anguilla anguilla N/A El-Mansy et al. 1998
Myxobolus pseudodispar Gorbunova, 1936 Limnodrilus hoffmeisteri, > Rutilus rutilus N/A Székely et al. 1999;
Psammoryctides spp., Marton & Eszterbauer
Tubifex tubifex 2012
Myxobolus rotundus Nemeczek, 1911 Tubifex tubifex > Abramis brama FJ851448 Székely et al. 2009
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Table 1 continued

Myxobolus shaharomae Molnar, Eszterbauer, Isochaetides michaelseni X Alburnus alburnus KF515726, Székely et al. 2014

Marton, Cech et Székely, 2009 KF515729-30

Myxobolus woottenii Molndr, Marton, Székely et | Tubifex tubifex X Rutilus rutilus DQ231157, Eszterbauer et al. 2006;

Eszterbauer, 2010 DQ231146 Molnar et al. 2010

Ortholinea auratae Rangel, Rocha, Limnodriloides agnes X Sparus aurata KR025868 Rangel et al. 2015

Borkhanuddin, Cech, Castro, Casal, Azevedo, KF703856

Severino, Székely et Santos, 2014

Parvicapsula minibicornis Kent, Whitaker et Manayunkia speciosa < Oncorhynchus spp. DQ231038 Bartholomew et al. 2006

Dawe, 1997

Sigmomyxa sphaerica (Thélohan, 1895) Nereis pelagica X Belone belone JN033225 Karlsbakk & Kgie 2012

Sphaerospora dicentrarchi Sitja-Bobadilla et Capitella sp. X Dicentrarchus labrax KT970639 Rangel et al. 2016

Alvarez-Pellitero, 1992

Sphaerospora dykovae (Lom et Dykovd, 1982) Branchiura sowerbyi < Cyprinus carpio N/A Molndr et al. 1999b*

Sphaerospora truttae Fischer-Scherl, EI-Matbouli Lumbriculus variegatus, > Salmo salar N/A Ozer & Wootten 2000*

et Hoffmann, 1986 Tubifex tubifex

Thelohanellus hovorkai Akhmerov, 1960 Branchiura sowerbyi < Cyprinus carpio DQ231155 Yokoyama 1997; Székely et
al. 1998; Anderson et al.
2000; Eszterbauer et al.
2006

Thelohanellus kitauei Egusa et Nakajima, 1981 Branchiura sowerbyi X Cyprinus carpio JQ690367 Zhao et al. 2016

Thelohanellus nikolskii Akhmerov, 1955 Tubifex tubifex < Cyprinus carpio N/A Székely et al. 1998

Nais spp. X Cyprinus carpio N/A Borkhanuddin et al. 2013

Thelohanellus wangi Yuan, Xi, Wang, Xie et Branchiura sowerbyi X Carassius auratus gibelio  JX458816 Xi et al. 2015

Zhang, 2015

Zschokkella nova Klokacewa, 1914 Tubifex tubifex < Carassius carassius N/A Uspenskaya 1995

Buddenbrockia plumatellae Schroder, 1910 Plumatella repens > Phoxinus phoxinus FJ939289, Grabner & El-Matbouli

FJ939291 2010a

Tetracapsuloides bryosalmonae (Canning, Curry, Fredericella sultana, > Oncorhynchus mykiss, FJ1939294 Feist et al. 2001;

Feist, Longshaw et Okamura, 1999) Plumatella repens Salmo trutta Morris & Adams 2006b;
Grabner & El-Matbouli
2008; 2010b

Tetracapsuloides vermiformis Patra, Hartigan, Fredericella sultana > Cyprinus caprio KX013242-43 Patra et al. 2017: Paper V

Morris, Kodadkova et Holzer, 2017




1.4. Pathology and host-parasite interactions

A number of Myxozoa have received attention due to the pathology and
disease-related mortalities they cause in both marine and freshwater fish worldwide.
One of the most important and best studied myxozoan pathogens is Myxobolus
cerebralis which causes whirling disease in salmonids by destruction of cartilage and
subsequent pressure on the central nervous system, leading to an erratic swimming
behaviour. The disease occurs in juveniles prior to ossification and leads to high
mortality rate (>90% in net-pen-reared smolts) (Shinn et al. 2015). Another
important fish pathogen is T. bryosalmonae causing proliferative kidney disease
(PKD) in salmonids (Hedrick et al. 1993), reaching up to 85% mortality in infected fish
(Sterud et al. 2007). Infection of the digestive tract by Enteromyxum leei Redondo et
Alvarez-Pellitero, 2002 (enteromyxosis) (Diamant 1992; Yasuda et al. 2005) and
Ceratonova shasta (syn. Ceratomyxa shasta) (Noble, 1950) (enteronecrosis,
ceratomyxosis) can lead to 100% mortality in affected stocks (Wales & Wolf 1955;
Ching & Munday 1984). C. shasta has been made responsible for massive salmonid
declines in the Klamath River basin at the US West coast (Ray et al. 2012).
Reproductive castration is caused by myxozoans invading the testes of their fish
hosts, e.g. Sphaerospora testicularis Sitja-Bobadilla et Alvarez-Pellitero, 1990 in
European seabass Dicentrarchus labrax, (Sitja-Bobadilla & Alvarez-Pellitero 1990;
Toledo-Guedes et al. 2012), Henneguya testicularis Azevedo, Corral et Matos, 1997
in Moenkhausia oligolepis (Glnther, 1864) (Azevedo et al. 1997), and Myxobolus
testicularis Tajdari, Matos, Mendonta et Azevedo, 2005 in Hemiodopsis microlepis
Kner, 1859 (Tajdari et al. 2005). Well-known fish-pathogenic myxozoans of carp are
Sphaerospora dykovae (Lom et Dykovd, 1982) and Sphaeropora molnari Lom,
Dykov4, Pavlaskova et Grupcheva, 1983 (swim bladder inflammation of carp and gill-
and skin sphaerosporosis) (Kovacs-Gayer 1983, Lom et al. 1983a), Parvicapsula
pseudobranchicola Karlsbakk, Szether, Hgstlund, Fjellsgy et Nylund, 2002
(parvicapsulosis) (Karlsbakk et al. 2002; Sterud et al. 2003), and Henneguya ictaluri
Pote, Hanson et Shivaji, 2000 (proliferative or ‘hamburger’ gill disease) (Pote et al.
2000). There is only one record of the Myxozoa acting as a human pathogen, i.e.
Kudoa septempunctata Matsukane, Sato, Tanaka, Kamata et Sugita-Konishi, 2010
which was associated with gastroenteritis after consumption of raw flounder sushi
Paralichthys olivaceus Temminck et Schlegel, 1846 in Japan (Kawai et al. 2012;
Ohnishi et al. 2013; Yahata et al. 2015).

Similar to other parasitic infections, after establishing contact with fish
mucosal surfaces, rejection of myxozoans by immune molecules present in fish
mucus is a common phenomenon (Gonzalez et al. 2007). If not eliminated, myxozoan
stages encounter an array of cell-mediated and humoral immune responses that
arise in the hosts’ epithelial tissues. For counter attack, myxozoans produces various
molecules such as proteases for successful host tissue invasion (Martone et al. 1999;
Kelley et al. 2003; 2004; Dorfler & El-Matbouli 2007; Funk et al. 2008). Blood is one
of the most common routes for myxozoans to reach target tissues though some
myxozoans are eradicated within the blood by an array of cellular and humoral
immune factors (Bjork & Bartholomew 2010). In the target host tissues, presence of
myxozoan parasites activates host immune mechanisms to regulate the interaction
of both immunoactivating and immunosuppressive cytokines (Gorgoglione et al.
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2013; Bjork et al. 2014). Establishment of acute or chronic disease pathology
depends on the host-myxozoan model, target tissue, age and immunity of the host.
Immunological data are available from the most important pathogenic myxozoan
species, i.e. C. shasta (Bjork & Bartholomew 2010; Bjork et al. 2014), Enteromyxum
spp. (Bermudez et al. 2006; Cuesta et al. 2006a; b; Alvarez-Pellitero et al. 2008;
Mufioz et al. 2007; Davey et al. 2011; Estensoro et al. 2012; 2013a; b; 2014a; b; Ronza
et al. 2016) and M. cerebralis (Kelley et al. 2003; 2004; Baerwald 2013). Other species
have received less attention in the past but are becoming more important as
environmental parameters change in different aquatic habitats.

Innate immune responses represent the first line of defence that is based
on cellular and humoral factors. The most common reaction is the formation of
granulomas, resulting in the elimination of the parasite by encapsulation (Koehler et
al. 2004; Fleurance et al. 2008; Hallett & Bartholomew 2012). A more severe case is
extensive proliferation of leucocytes (mainly macrophages and lymphocytes),
leading to hyperplasia of the haematopoietic organs (Al-Samman et al. 2003;
Schmidt-Posthaus et al. 2012). Phagocytes play important roles in the hosts’ fight
against parasites but their activity can be modulated by myxozoans (Sitja-Bobadilla
et al. 2006; 2008). Humoral innate responses include peroxidases, lysozyme or
complement in fish serum, and these are variably involved in myxozoan infection,
showing increasing levels (Mufioz et al. 2007) or depletion (Cuesta et al. 2006a) upon
infection.

Adaptive immune responses have been reported from hosts, infected with
a number of myxozoan species, e.g. with specific antibodies being formed against M.
cerebralis (Hedrick et al. 1998), T. bryosalmonae (Saulnier et al. 1996), C. shasta
(Bartholomew et al. 2001) and E. leei (Estensoro et al. 2010), though production and
efficiency of antibodies vary depending on hosts and parasites (Hedrick et al. 1991;
Ryce 2003).

Transcriptional profiling during myxozoan infection (RNA-seq) is a powerful
tool providing new insights into the immune mechanisms shaping protective
immunity and chronic disease (Robledo et al. 2014; Ronza et al. 2016). Such data
have been produced for T. bryosalmonae in trout (Kumar et al. 2014) and E. leei
infections in gilthead seabream (Robledo et al. 2014; Ronza et al. 2016). In all of
these molecular data sets, the prominent involvement of macrophages suggests that
innate immune responses play a key role in disease susceptibility and resistance.
Both IgM and IgT transcripts are upregulated during PKD (Gorgolione et al. 2013) and
in the intestines of trout surviving infection with C. shasta (Zhang et al. 2010). The
elevation of IL10 in IgM+ and IgT + B cells indicate the presence of regulatory B cells
in fish (Takizawa et al. 2013) and their involvement in myxozoan specific immunity.

Myxozoans evolved various additional host evasion strategies to escape the
host immune system for successful establishment within the host. Some histozoic
myxozoans provoke minimal host immune system reaction by invading
immunologically privileged sites of the host body (for e.g. M. cerebralis and
Myxobolus fryeri Ferguson, Atkinson, Whipps et Kent, 2008 in brain and the central
nervous system, Myxobolus and Sphaerospora spp. in the eye and S. testicularis in
testes) where host can abide parasitic antigen without any inflammatory response
(Lom & Dykova 1992; Sitja-Bobadilla & Alvarez-Pellitero 1993; El-Matbouli et al.

13



1995a; Ferguson et al. 2008). Intracellular development is an advantageous strategy
for some myxozoan species (Kabata & Whitaker 1989; Lom et al. 1989a; Amandi et
al. 1985; Swearer & Robertson 1999; Casal et al. 2008). Due to adaptive immunity,
fish hosts were found to acquire higher resistance against previous encountered
pathogenic Myxozoa (Foott & Hedrick 1987; Sitja-Bobadilla et al. 2007).

In the case of sphaerosporid blood stages in carp, their massive proliferation
is at race against the fish’ cellular, humoral and potentially adaptive immune
responses. Hence, only carp fry are sensitive to gill and skin sphaerosporosis caused
by S. molnari or swim bladder inflammation (SBI) caused by S. dykovae and S. molnari
(Holzer et al. 2014: Paper lIl). Blood stages are engulfed by macrophages (Figure 4)
but their number is often far superior to that of macrophages. We determined that
the unique motility of these stages in the blood is a method of evading contact-based
immune mechanisms of macrophages, independent of phagocytosis (Hartigan et al.
2016b: Paper V).

Figure 4: Giemsa stained blood smear of common carp showing extrasporogonic blood
stages of Sphaerospora dykovae consisting multiple cells inside (arrows) engulfed by
host macrophages (double arrows) (scale = 10 um) (Dykova & Lom 2007).

Chapter 2. The Malacosporea

2.1. History of the discovery

The Malacosporea represent the most basal primitive myxozoans, with a
limited number of nominal taxa. Malacosporeans differ from myxosporeans in
various aspects e.g. bryozoans as definitive hosts, soft spore shell valves, unique bar-
like electron dense sporoplasmosomes in primary cells of sporoplasm and unique
developmental (triploblast, vermiform) stages observed in the bryozoan hosts
(Schroder 1910; Canning et al. 1996; 2000) (Figure 5).
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Malacosporean vermiform parasites were first discovered in the middle of
nineteenth century (Dumortier & van Beneden 1850) and later named
Buddenbrockia plumatellae (Schréder 1910). This parasite was suggested to be a
mesozoan, a nematode or a platyhelminth (Schroder 1910; 1912; Braem 1911).
Correct identification of B. plumatellae took almost a century (Monteiro et al. 2002;
Okamura et al. 2002).

Presently, the Malacosporea are composed of only five nominal species
from two genera: B. plumatellae, B. allmani, Buddenbrockia bryozoides (Canning,
Okamura et Curry, 1996), T. bryosalmonae and Tetracapsuloides vermiformis Patra,
Hartigan, Morris, Kodadkova et Holzer, 2017 (Schroder 1910; Canning et al. 2002;
2008; Patra et al. 2017: Paper V). Recently, molecular identification of
malacosporeans from bryozoan and fish hosts considerably increased their diversity
account to a total of 17 taxa (Hartikainen et al. 2014; Bartosova-Sojkova et al. 2014:
Paper Il). The discovery of this previously hidden diversity is explained by the cryptic
nature of malacosporean infections in both host groups (Hartikainen et al. 2014;
BartoSova-Sojkova et al. 2014: Paper Il; Patra et al. 2017: Paper V).

Only one malacosporean species, T. bryosalmonae is recognized as
economically important as it causes PKD in salmonid fish. Being originally described
as PKX organism (Seagrave et al. 1980), later it was determined as the etiological
agent of the PKD (Kent & Hedrick 1985; Feist & Bucke 1987) and even later as a
malacosporean (Anderson et al. 1999; Canning et al. 1999; Feist et al. 2001). This was
the first discovery of a malacosporean indirect two-host life cycle including a
bryozoan and a fish host (Table 1).

Initially, malacosporeans were considered a single genus, Tetracapsula
(Canning, Okamura et Curry, 1996) in a single family, Saccosporidae (Canning et al.
2000), with two species: Tetracapsula bryosalmonae (Canning et al. 1999) and
Tetracapsula bryozoides (Canning, Okamura et Curry, 1996), both forming sac-like
stages in the invertebrate host. Later, based on highly similar 185 rDNA sequences,
T. bryozoides (Canning et al. 1996) was incorporated into B. plumatellae, which has
vermiform stages. This made T. bryozoides a junior synonym of the earlier described
B. plumatellae, with both vermiform and sac-like stages in the bryozoan host
(Monteiro et al. 2002; Canning et al. 2002). Additionally, due to differences in
developmental and molecular data, Tetracapsula bryosalmonae was renamed under
a new genus: Tetracapsuloides bryosalmonae (Canning et al. 2002). As part of the
present work, due to clear phylogenetic clustering in two clades, the use of different
hosts for the formation of vermiform vs. sac-like stages, the vermiform stages
retained the previous name B. plumatellae while the sac-like stages were ascribed
to Buddenbrockia bryozoides (n. comb., Patra et al. 2017: Paper V).

15



Figure 5: Different malacosporean spore-forming stages (A—C) and spores (D—F), produced
in bryozoan (A—C, E=F) and fish (D) hosts. A: vermiform stage of Buddenbrockia plumatellae
(scale = 100 um) (Jiménez-Guri et al. 2007a); B: sac-like stages of Tetracapsuloides
bryosalmonae (scale = 50 um) (McGurk et al. 2006a); C: lobed stage (Hartikainen et al.
2014); D: fish malacospore (scale= 10 um) (Hedrick et al. 2004); E: malacospores of T.
bryosalmonae from the bryozoan host (scale= 20 um) (http://www.nhm.ac.uk/our-
science/our-work/sustainability/emerging-diseases.html); F: malacospore of T.
bryosalmonae with valve cells (vc) and polar capsule openings (white arrowheads) (scale =
3 um) (Okamura et al. 2015). Red arrow = sporoplasm, black arrowhead = polar capsule.

2.2. Life cycle specialties: Sacs and myxoworms in bryozoan hosts

Malacosporeans have been reported exclusively from freshwater bryozoans
of all phylactolaemate (Phylactolaemata) families, i.e. Cristatellidae, Fredericellidae,
Lophopodidae, Pectinatellidae and Plumatellidae (reviewed by Patra et al. 2017:
Paper V). Fish belonging to three families, i.e. Salmonidae, Cyprinidae and Percidae
(reviewed by Patra et al. 2017: Paper V) have been reported to harbour
malacosporeans. B. plumatellae, T. vermiformis and an unidentified Buddenbrockia
sp. were successfully transmitted from bryozoan to cyprinid hosts (Table 1), but only
the life cycle of T. bryosalmonae was fully completed in aquaria systems, using
specific pathogen free (SPF) hosts (Table 1).
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As mentioned above (Chaper 1.3), apart from the traditional indirect life
cycle, vertical transmission of malacosporeans to the new colonies by colonial
fragmentation of bryozoans and via infected statoblasts have been described for
malacosporeans (Hill & Okamura 2007; Abd-Elfattah et al. 2014). Worm-like stages
(= myxoworms, Canning et al. 2008) were observed to be released from a statoblast
of Plumatella fungosa (Pallas, 1768) on their hatching (Taticchi et al. 2004). Parasitic
stages within the statoblasts of the bryozoan host could solve the problem of limited
longevity (Kinkelin et al. 2002) of the infective soft-shelled malacospores from
bryozoan hosts, which supposedly cannot survive the winter in the enviroment.
During favourable environmental conditions when zooids hatch to form a new
colony, malacosporeans simultaneously begin their proliferation to establish
infection within the newly grown bryozoan colony.

Malacosporeans produce different types of sporogonic stages within the
bryozoan hosts (Figure 5A-C). Outer walls of the sac-like stages of B. allmani, B.
bryozoides and T. bryosalmonae are composed of two simple layers (outer epithelial
layers with mural cells and inner basal lamina) (Okamura 1996; Canning et al. 2007;
Morris & Adams 2007a). In contrast, vermiform stages are triploblastic, and possess
an additional muscle cell layer with visible muscle fibers (McGurk et al. 2006b; Morris
& Adams 2007b; Canning et al. 2008; Gruhl & Okamura 2012; Okamura & Gruhl 2016;
Figure 6). Vermiform stages of B. plumatellae were found to have four tetraradially
arranged muscle blocks (Figure 6). The muscle cells cause rhythmic sinusoidal or
spiralling movement of the myxoworm (Gruhl & Okamura 2012). A third type of
trophozoite is a non-motile, lobed irregular structure, devoid of muscle fibres and
being similar to sac-like stages in F. sultana (Hartikainen et al. 2014; Figure 5C).
Development of the trophozoite stages starts within the bryozoan epithelium where
cryptic single cell stages are formed. These covert stages can endure for years until
switching to an overt infection after which the production of multicellular
trophozoite stages in the coelom of bryozoans occurs (Hartikainen et al. 2013; Abd-
Elfattah et al. 2014). Worm-like stages of B. plumatellae develop very fast within the
bryozoan host where their development from single cell stages to mature
myxoworms takes only six days. Release of mature myxoworms from host is
accomplished overnight (Canning et al. 2002).

Figure 6: Transverse section of a
vermiform stage of Buddenbrockia
plumatellae showing two-layer
arrangement of the body wall
consisting of outer most epithelial
layer made of mural cells (M) and
inner four sets of muscle cells (MP)
separated by basal lamina. Four
primary type A cells (A) are separating
four MP surrounding the central
cavity (scale = 4.5 um) (Canning et al.
2008)
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Speculations exist about the multiplication of whole sac-/vermiform stages
which were mentioned as 1) budding of sacs (Okamura 1996), 2) budding of worm-
like stages of Buddenbrockia sp. (Morris et al. 2002) and 3) division of myxowormes,
(Canning et al. 2002).

2.3. Cryptic nature of parasitic stages

Very little is known about the development of malacosporeans in their fish
hosts, with comprehensive data existing only for T. bryosalmonae. Skin and gills were
identified as portals of entry into fish (Morris et al. 2000, Longshaw et al. 2002;
Holzer et al. 2006b; Grabner & El-Matbouli 2010b) while extrasporogonic stages
were detected in fish blood and in the interstitial kidney tissue (Ferguson &
Needham 1978; Lom et al. 1983b; 1991; Kent & Hedrick 1985; 1986; Clifton-Hadley
et al. 1987; Morris et al. 2000; Holzer et al. 2006b). Presporogonic stages invade the
renal tubules where amoeboid monosporic pseudoplasmodia are produced (Morris
& Adams 2008). Similarity of early malacosporean pseudoplasmodia with those of
other myxozoans (Sphaerospora spp., Hoferellus spp., Ortholinea spp.) often
impedes the recognition of malacosporeans in fish. Ambiguity of the fish
malacospore valve cell number and arrangement in T. bryosalmonae in different fish
hosts Salmo trutta L. (four) and Oncorhynchus mykiss Walbaum, 1792 (two) (Kent &
Hedrick 1986; Kent et al. 2000; Hedrick et al. 2004; Morris & Adams 2008) still
requires further verification. Early infections with low infection intensity can easily
be overlooked by microscopy and sporogonic stages within the kidney tubules
require an expert’s eye, even when spores are present, as the soft spore valves are
difficult to discriminate (BartoSova-Sojkova et al. 2014: Paper Il).

Similar to spore-forming stages in fish hosts, malacosporeans within
bryozoan host are difficult to recognize. Initial unicellular stages are indistinguishable
until multicellular spore-forming stages are visible. Sac- or vermiform stages of
distantly related malacosporeans can be morphologically identical (Hartikainen et al.
2014; Patra et al. 2017: Paper V). T. bryosalmonae spores are the only ones for which
the complete data of cellular arrangement in the bryozoan is known (McGurk et al.
2005).

2.4. Biodiversity and phylogeny

In comparison to the Myxosporea, the Malacosporea have always been
considered a species-deficient group. However, the hosts, freshwater bryozoans
show a worldwide distribution (Wood 2001; Massard & Geimer 2008). To date,
approximately 94 bryozoan species are known (Massard & Geimer 2008) and it can
hence be expected that the biodiversity of malacosporeans is higher than known
from morphological reports. Using molecular methods, Hartikainen et al. (2014)
discovered five new malacosporean species from bryozoan hosts from Borneo,
Germany, Italy and USA. Similarly, BartoSova-Sojkova et al. (2014: Paper Il) detected
an unexpected biodiversity of malacosporeans in fish with another five new species
in four different countries (Czech Republic, Hungary, Italy and Slovakia). While this
likely indicates high diversity also in other regions, sampling from both host groups
is currently strongly biased (predominantly from North America and Europe) and
reflects only a punctual distribution. Limited records from vast areas of Asia (Braem

18



1911; Hartikainen et al. 2014) and South America (Marcus 1941) and no record from
other continents (Africa and Australia) clearly indicate that malacosporean diversity
is likely much higher than presently known. Though all malacosporeans were found
in freshwater bryozoans, vermiform parasite stages were also recorded from marine
bryozoans (Hastings 1943), implying potential existence of marine malacosporeans.
Bryozoans are predominantly marine group of organisms (Gordon 1999) including
around 8000 species worldwide (Ryland 2005) and marine bryozoans as potential
hosts for malacosporeans have not yet been explored sufficiently. Other
invertebrate groups closely related to bryozoans (phoronids or brachiopods) or even
echinoderms, hemichordates or molluscs were also suggested to serve as potential
invertebrate hosts (BartoSova-Sojkova et al. 2014: Paper Il; Okamura & Gruhl 2015).

Similar to myxosporeans, the majority of malacosporean sequence data is
available from 18S rDNA though there are few records of 28S rDNA (Hartikainen et
al. 2014; Bartosova-Sojkova et al. 2014: Paper Il) and protein-coding genes (Jiménez-
Guri et al. 2007a; b; BartoSova-Sojkova et al. 2014). Based on 18S rDNA phylogeny,
malacosporeans are divided into four clades: Buddenbrockia spp., Tetracapsuloides
spp. and two novel basal lineages (Hartikainen et al. 2014; BartoSova-Sojkova et al.
2014: Paper Il; Fiala et al. 2015b; Patra et al. 2017: Paper V). Phylogenetic analysis
based on 28S rDNA data also strongly supported this outcome (Bartosova-Sojkova et
al. 2014: Paper IlI; Hartikainen et al. 2014). Vermiform stages were considered to
represent a more primitive character than sac-like stages which were suggested to
be a result of morphological simplification due to endoparasitism (BartoSova-
Sojkova et al. 2014: Paper Il). However, with increasing molecular data gained on the
two morphotypes this hypothesis fell (Hartikainen et al. 2014; Patra et al. 2017:
Paper V). It appears that the complex bauplan including muscle strands was gained
and lost multiple times during the evolution (Hartikainen et al. 2014). The most basal
clade has lobed stages which opened a new dimension to this debate (Hartikainen
et al. 2014; Fiala et al. 2015b).

Spore morphology is the most commonly used feature for myxozoan
classification. While this is feasible to a large extent in myxosporeans, despite many
para-/polyphyletic genera (see section 1.2), malacosporean spores from bryozoans
are virtually indistinguishable between taxa as they are of identical size and shape.
To differentiate the two nominal malacosporean genera, Buddenbrockia and
Tetracapsuloides, Canning et al. (2002) and Canning & Okamura (2004) proposed
several distinguishing characters: 1) only the former one has radially striated lucent
layer on the mature polar capsule, 2) sporogenesis and ploidy of the cells are
different in both genera, 3) fish host is known only from Tetracapsuloides, 4)
vermiform stages are present only for Buddenbrockia, 5) shape and size of bryozoan-
related stages differs (spherical with up 250 mm in Tetracapsuloides; ellipsoid,
elongate, irregular or constricted with up to 700 mm in Buddenbrockia). and, 6) up
to 20% of 18S rDNA divergence exists between the two genera. Later, with the
discovery of new species, developmental studies and life cycles, many points were
either found to be subtle or overruled (McGurk et al. 2006a; b; Grabner & EI-
Matbouli 2010a; BartoSova-Sojkova et al. 2014: Paper II; Hartikainen et al. 2014;
Patra et al. 2017: Paper V) and it was shown that both, Buddenbrockia and
Tetracapsuloides can have sac- and vermiform stages (Hartikainen et al. 2014;

19



BartoSova-Sojkovd et al. 2014: Paper Il; Patra et al. 2017: Paper V). DNA sequence
divergence is presently the strongest differential character in malacosporean
systematics and is an absolute requirement for new species descriptions and for
designing a new taxonomic system. However, the synthesis of molecular data with
biological characters and data on plasmodia morphology in the bryozoan host
appear to be the best combination for species differentiation at present, though
confirmation is urgently required for more taxa (Patra et al. 2017: Paper V).

Chapter 3. Sphaerospora sensu stricto

3.1. A clade with the short history but long rDNA inserts

The etymology of “Sphaerospora” was adopted from the typical spherical or
subspherical shape of the spores formed by Sphaerospora spp. in the vertebrate host
(Lom & Dykova 2006). Spores consist of two shell valves with two spherical or
subspherical polar capsules situated perpendicular to the suture plane.
Sphaerosporids produce mostly disporic, sometimes monosporic and very rarely
polysporic plasmodia (Kudo 1919; Lom et al. 1983a; Hedrick et al. 1990; Supamattaya
et al. 1991; Lom & Dykova 2006; Jirk( et al. 2007; BartoSova et al. 2013).

Only in 2004, the first Sphaerospora 18S rDNA sequences, i.e. that of
Sphaerospora truttae Fischer-Scherl, EI-Matbouli et Hoffmann, 1986 and that of the
type species Sphaerospora elegans Thélohan, 1892, became available, and it was
shown to be much longer (2541 bp; Holzer et al. 2004) than that of other myxozoans
(generally 1500-2000 bp; Fiala 2006). When further sphaerosporid sequences
became available, sequence alighnments showed that all members have unique
extensive nucleotide insertions in the variable regions of the 185 and 28S rDNA (Jirk(
et al. 2007; Holzer et al. 2007; Bartosova et al. 2013). So far, the longest insertions
were found in Sphaerospora molnari Lom, Dykova, Pavlaskova et Grupcheva, 1983,
producing one of the longest 18S rDNA sequences amongst eukaryotes with 3.7 kb
(Eszterbauer et al. 2013). The uniqueness of the rDNA insertions of Sphaerospora
spp. might indicate special behavioural or biological adaptations, potentially related
to invertebrate host switching (Holzer et al. 2007; Bartosova et al. 2013) or a special
type of proliferation and motility in the blood (Hartigan et al. 2016b: Paper V). To
date, 18S rDNA sequence data from 19 Sphaerospora s. s. species (15 described and
four undescribed species) are available in GenBank. Additionally, we amplified new
18S rDNA sequences of 13 species (Patra et al. In Prep.: Paper VI). All are
characterized by large expansion segments in their rDNAs and cluster together with
the type species S. elegans in a separate phylogenetic group coined Sphaerospora s.
s. (Jirkd et al. 2007). This clade is basal or sister to the other two myxosporean clades
(see section 1.2; Figure 2). Five other sphaerosporid species are present in Genbank
and cluster outside these “true” sphaerosporids now considered Sphaerospora
sensu lato (Jirk( et al. 2007; see below).

The vertebrate host spectrum of Sphaerospora spp. expands from marine,
freshwater and brackish fish to amphibians (Table 2). Sequenced Sphaerospora s. s.
members are predominantly coelozoic (except histozoic S. molnari and
Sphaerospora fugu Tun, Yokoyama, Ogawa et Wakayabashi, 2000), affecting mostly
the urinary system and often causing severe disease (Lom et al. 1983a; Sitja-
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Bobadilla & Alvarez-Pellitero 1992; Tun et al. 2000; Lom & Dykova 2006; Holzer et al.
2013b: Paper 1). Sphaerosporids are generally host species-specific (Lom et al.
1989b). They have been reported to cause maximum pathogenicity in juvenile (0+
age) fish (McGeorge et al. 1997; Holzer et al. 2013b: Paper I). Some economically
important pathogenic species are: S. dykovae, the causative agent of SBI in common
carp (Kovdcs-Gayer 1983), S. molnari, the agent of gill and skin sphaerosporosis in
common carp and an important cofactor or precondition of SBI (Lom et al. 19833;
Holzer et al. 2014: Paper |ll), Sphaerospora motemarini Holzer, Peckova, Patra,
Brennan, Yanes-Roca et Main, 2013, and Sphaerospora sparis (Sitja-Bobadilla et
Alvarez-Pellitero, 1995) which cause severe glomerular disease in grey snapper
Lutjanus griseus (L.) (Holzer et al. 2013b: Paper 1) and gilthead sea bream Sparus
aurata L. (Palenzuela et al. 1999), respectively.

3.2. Currently known diversity

The genus Sphaerospora is currently composed of 103 described nominal
species (Table 2). Molecular data is available for a total of 24 previously reported
(Jirkd et al. 2007; BartoSova et al. 2013, Eszterbauer et al. 2013; Holzer et al. 2013b:
Paper |; Sanders et al. 2015) and 13 new Sphaerospora spp. (Patra et al. In Prep.:
Paper VI) while nothing is known about the phylogenetic origin of most
sphaerosporids which are rendered incertae sedis (Jirk( et al. 2007). Eighteen
Sphaerospora species were renamed from Leptotheca (Gunter & Adlard 2010),
based on morphological and in few cases molecular data. The genus
Polysporoplasma (Sitja-Bobadilla et Alvarez-Pellitero, 1995) was demised and its
representatives were included into genus Sphaerospora as the two genera differed
only in the number of sporoplasms (four to twelve in Polysporoplasma spp. vs. one
to two in Sphaerospora spp.) (Sitja-Bobadilla & Alvarez-Pellitero 1995; Lom & Dykova
2006; BartoSova et al. 2013). This taxonomic revision was supported by phylogenetic
studies, which placed all four polysporoplasmid species including the type species
Polysporoplasma sparis (Sitja-Bobadilla et Alvarez-Pellitero, 1995) within the
Sphaerospora s. s. clade. For similar reasons Bipteria formosa (Kovalova et
Gaevskaya, 1979), was renamed Sphaerospora formosa though it possesses short,
wing-like appendages (BartoSova et al. 2013).

Based on 18S rDNA data, only five out of total 37 sphaerosporids i.e. S.
testicularis, Sphaerospora dicentrarchi Sitja-Bobadilla et Alvarez-Pellitero, 1992,
Sphaerospora oncorhynchi Kent, Whitaker et Margolis, 1993, Sphaerospora
elwhaiensis Jones, Fiala, Prosperi-Porta, House, Mumford, 2011, and Sphaerospora
sp. from Mugil curema are currently designated to Sphaerospora sensu lato (Figure
7; Table 2) due to a) uncommon ancestry with “true” sphaerosporids though being
morphologically similar or, b) erroneous DNA sequencing of co-occuring
myxosporean infections (Diamant et al. 2005; Fiala 2006; Bartosova et al. 2009;
2011; Jones et al. 2011). S. testicularis clusters within the Parvicapsula subclade of
the marine urinary clade (Figure 2; BartoSova et al. 2011) and has atypical
sphaerosporid features like a sporogony resembling the disporic development of
members of the freshwater myxosporean lineage (Morris & Adams 2008) and spores
with soft shell valves, a binucleate sporoplasm and polar capsules with a burred
stopper structure (Sitja-Bobadilla & Alvarez-Pellitero 1993) similarly as in

21



malacosporeans (Morris & Adams 2008). S. dicentrarchi and Sphaerospora sp. from
Mugil curema are truly histozoic and cluster within the marine Kudoa clade (Diamant
et al. 2005; Fiala 2006; Bartosova et al. 2009; 2011) with other histozoic species of
the genera Kudoa or Unicapsula Davis, 1924 (e.g. Diamant et al. 2005). S. dicentrarchi
also shares several other features with multivalvulids such as baglike polysporous
plasmodia, a single binucleated sporoplasm and miniature spores with overlapping
shell valves (Sitja-Bobadilla & Alvarez-Pellitero 1992). S. elwhaiensis and S.
oncorhynchi cluster within the freshwater Myxidium clade (Jones et al. 2011) and
Myxidium lieberkuehni clade (Fiala 2006), respectively, but recent re-sequencing of
these sphaerosporids has revealed misidentification due to mixed infection and true
affinity to the Sphaerospora s. s. clade (Atkinson et al. 2015). Co-infections and
preferential amplification of shorter amplicons without rDNA inserts in non-
sphaerosporid species led to misidentifications of several other myxozoans as
Sphaerospora spp. but these sequencing errors have already been corrected. For
example, a Zschokkella species was wrongly identified as Sphaerospora angulata
Fujita, 1912 (Acc. no. AY735411) in goldfish Carassius auratus (L.) (Eszterbauer &
Székely 2004). Two different Myxobolus spp. had been ascribed to S. molnari (Acc.
no. AF378345; Kent et al. 2001) and S. dykovae (Acc. no. AY735410; Eszterbauer &
Székely 2004) due to mixed infection in the host organ. The ambiguities were
resolved after the amplification of the complete 18S rDNAs of S. angulata, S. molnari
and S. dykovae, which were found to cluster within Sphaerospora s. s. (Eszterbauer
2011; Eszterbauer et al. 2013; Holzer et al. 2013a). Table 2 summarizes all
Sphaerospora spp. reported to date. Based on sequence corrections and taxonomic
changes, it is likely that Sphaerospora s. s. will become a well-defined monophyletic
clade.

22



€¢

Table 2: List of Sphaerospora species along with the information about their synonyms (if present), vertebrate hosts, organ infected within the vertebrate host,
spore measurements, Genbank accession numbers and the references. Abbreviations —BL: blood, EY: eye, GB: gall bladder, GL: gill, GM: glomeruli, IN: intestine,
KD: kidney, LV: liver, MS: muscle, NS: nose, OC: oral cavity, OV: ovary, PR: peritoneum, RT: renal tubules, Rl: renal interstitial tissue, SK: skin, SP: spleen, SW:
swim bladder, TS: testis, UB: urinary bladder, UR: ureter, X: unknown, L: spore length, W: spore width, T: spore thickness, D: spore diameter, PC: polar capsule
length x width. All spore measurements are in um. Genbank accession numbers are specified for 185 rDNA (black), 28S rDNA (red) and EF2 (purple). Amphibian
hosts are shown in green colour, Blue = Sphaerospora sensu stricto spp., orange = Sphaerospora sensu lato spp. and, bold= the type species.

Species name Vertebrate host Organ Spore measurements Access no. Reference
Sphaerospora aldrichettae Su et White, Aldrichetta forsteri GL L:6.3-7.0, T: 6.2-7.0, PC: 2.1-2.8x1.5-1.8 X Su & White 1994
1994
Sphaerospora amurensis Akhmerov, 1960 Hypophthalmichthys molitrix RT L: 9-11, T: 8-10, PC: 3.5-4x3-3.5 X Shul’man 1966
Sphaerospora angulata Fujita, 1912 Carassius auratus auratus, RT L:6.53-7.1, T: 5.78-6.2, PC: 2.76- JQ801525-30; Fujita 1912

Carassius gibelio 3.32x2.18-2.72 JQ801534-38;

JQ801537
Sphaerospora araii Arthur et Lom, 1985 Raja rhina RT L:15.2,T: 14.6, PC: 6.5 X Arthur & Lom
1985

Sphaerospora armatura (Yoshino et Albatrossia pectoralis, UB,RT  L:12.9,T:20.9, PC: 5.7x5.7 X Yoshino & Moser
Moser, 1974) (Syn: Leptotheca armatura) Coryphaenoides leptolepis 1974
Sphaerospora bramae El-Matbouli, Abramis brama RT L:4.4-5.4,T:4.3-5.4,PC: 2.1 X El-Matbouli et al.
Hoffmann et Kern, 1995 1995b
Sphaerospora brevis (Polyanskii, 1955) Myoxocephalus scorpius UB L:10-12, T: 11.7-12.6, PC: 3.6-4.5 X Polyanskii 1955;
(Syn: Leptotheca brevis) Shul’'man 1966
Sphaerospora brevoides (Zhao et Song, Chirolophis japonicus uB L: 6-8, T: 7-10, PC: 2.1x1.7 X Zhao & Song
2009) (Syn: Leptotheca brevoides) 2009
Sphaerospora carassii Kudo, 1919 Hypophthalmichthys molitrix, GL D: 8-13, PC: 4-5 X Kudo 1919

Ctenopharyngodon idella,

Carassius auratus auratus,

C. gibelio, Rutilus rutilus
Sphaerospora chagasi (Nemeczeck, 1926) Leptodactylus ocellatus RT L:10-11, T: 15, PC: 8-8.5x8-8.5 X Nemeczck 1926
(Syn: Leptotheca chagasi)
Sphaerospora chinensis (Lee et Nie in Cyprinus carpio GL L:7.4,T:7 X Lom et al. 1983a
Chen, 1973) (Syn: Sphaerospora
branchialis)
Sphaerospora colomani Baska, 1990 Acipenser ruthenus RT L: 8.6, T: 10.2 X Baska 1990
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Table 2 continued

Sphaerospora compressa (Noble, 1939) Rimicola eigenmanni uB L:10.5,T: 12.2, PC: 3.3x4 X Noble 1939
(Syn: Leptotheca compressa)
Sphaerospora coregoni El-Matbouli, Coregonus lavaretus RT L:8.2,T:11.3 X El-Matbouli et al.
Hoffmann et Kern, 1996 1996
Sphaerospora corsulae Sarkar et Ghosh, Rhinomugil corsula GL L:4.9,T: 4.76, PC: 1.74x1.7 X Sarkar & Ghosh
1991 1991
Sphaerospora cristata Schulman, 1962 Lota lota UB, UR L:9-10, W: 8.5-10, T: 8.3-10, PC: 3.5- X Shul’'man 1966
4x2.5-3
Sphaerospora ctenopharyngodoni Ctenopharyngodon idella GL L:14.7, W: 12.4,T: 12, PC: 5.9x4.8 X Chen & Ma 1998
Chen, 1998
Sphaerospora danubialis Molnér, 1991 Gymnocephalus schraetzer, RT L:10.1, W:9.1,T:8.7,PC: 4.4 X Molnar 1991
G. cernua, Sander lucioperca
Sphaerospora dicentrarchi Dicentrarchus labrax GB, IN, L:4.5,T:3.9,PC:1.78x 1.4 KT970638-39, Sitja-Bobadilla &
Sitja-Bobadilla et Alvarez-Pellitero, 1992 other KC516864, Alvarez-Pellitero
tissue AY278564; 1992
KC516866-67,
FJ417074;
JX286642
Sphaerospora diminuta Li et Desser, 1985 Lepomis gibbosus RT, UR D:7.5,PC: 2.5 X Li & Desser 1985
Sphaerospora dissostichi Brickle, Kalavati Dissostichus eleginoides GB L: 13, T: 11.5, PC: 3.6 X Brickle et al. 2001
et MacKenzie, 2001
Sphaerospora dogieli Schulman, 1962 Silurus soldatovi uB L: 7-7.5, W: 7-7.5, T: 5.7-6, PC: 2.8~ X Shul’man 1966
Parasilurus asotus 3x1.7-2
Sphaerospora dubinini Schulman, 1962 Pseudobagrus ussuriensis uB L: 8-10.2, T: 7.3-8.5, PC: 4.2-4.6x2.5-2.8 X Chen & Ma 1998
Sphaerospora dykovae (Dykové et Lom, Cyprinus carpio RT, BL, L:7,T:7.18, PC: 3.11x2.42 JQ801531-33, Dykova & Lom
1982) (Syn: Sphaerospora renicola) SB JF758875; 1982
JQ801540-46
Sphaerospora elegans Thélohan, 1892 Gasterosteus aculeatus, RT,UB, L:10.2,T:10.1,PC:3.9 AJ609590, Thélohan 1892
Pungitius pungitius, Pungitius ov JX286618;
platygaster, Platichthys flesus, JX286627
Phoxinus phoxinus
Sphaerospora elwhaiensis Jones et Fiala, Oncorhynchus nerka RT L:10.3,T:11.2, PC: 3.5 EU371498; Jones et al. 2011
2011 HQ450772
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Sphaerospora epinepheli Supamattaya, Epinephelus malabaricus, RT,GM  L:8.7,T:13.4,PC:3.7 HQ871152-3, Supamattaya et
Fischer-Scherl, Hoffmann et Epinephelus coioides KJ939364 al. 1991
Boonyaratpalin, 1991
Sphaerospora formosa (Kovalova et Merlangius merlangus RT L: 6.6, T: 6.6, PC: 3.6 FJ790307-9, Karlsbakk & Kgie
Gaevskaya, 1979) (Syn: Bipteria formosa) GQ374533, 2009
Sphaerospora fugu (Tun, Yokoyama, Takifugu rubripes IN L:9,T:14, PC: 2.8x2.8 AB195805 Tun et al. 2000
Ogawa et Wakayabashi, 2000) (Syn:
Leptotheca fugu)
Sphaerospora galinae Evlanov, 1981 Tinca tinca RT L: 8.8, T: 8.4, PC: 4.8x4 X Evlanov 1981
Sphaerospora gasterostei Schuurmans- Gasterosteus aculeatus RT,UB, L:6.7,T:7,PC:3.5 X Schuurmans-
Stekhoven, 1920 ov Stekhoven 1920
Sphaerospora gobionis Lom, Pavlovskova Gobio gobio RT L:7.1,T: 6.9, PC: 3.4x2.9 X Lom et al.1985
et Dykova, 1985
Sphaerospora glomerosa (Davis, 1917) Paralichthys albigutta UB L:4.5,T: 9, PC: 2x2 X Davis 1917
(Syn: Leptotheca glomerosa)
Sphaerospora hankai (Lom, Desser et Ameiurus nebulosus RT L:6.1,T: 6, PC: 2.7-2.8x2-2.4 JX286623; Lom et al. 1989b
Dykovd 1989) JX286632
Sphaerospora hangzhouensis Li et Wu, Cyprinus carpio UB L: 6-6.4, T: 6.4-6.9, PC: 2.4-2.8x1.6-2.4 X Chen & Ma 1998
1983
Sphaerospora hunanensis Chen, 1998 Carassius auratus auratus GL L:9.1, W: 10, T: 6, PC: 4.8x3.6 X Chen & Ma 1998
Sphaerospora hupehensis Li et Nie, 1973 Acathorhodeus sp. GL L:7.8,W:7.4,T:7.5, PC: 3.3x2.8 X Chen & Ma 1998
Sphaerospora hypophthalmichthydis (Chen | Hypophthalmichthys molitrix IN L:9.6,T: 12.0 X Arthur & Lom
et Hsieh, 1984) (Syn: Podospora 1985
hypophthalmichthydis)
Sphaerospora inaequalis Landsberg, 1987 Clarias gariepinus RT L:7.4,T: 6.9, PC: 4.2x3.6 & 3.3x2.9 X Landsberg 1987
Sphaerospora johnae Sarkar, 2010 Johnius belangerii RT L:10.2, T: 10, PC: 3.9 X Sarkar 2010
Sphaerospora koreana (Cho et Kim, 2001) Sebastes schlegelii RT L: 8.59, T: 13.42, PC: 3.86x3.86 X Cho & Kim 2001
(Syn: Leptotheca koreana)
Sphaerospora krogiusi (Shul’'man, 1966) Oncorhynchus keta, O. nerka, UB L:5.8-7.5, T: 7.5-11, PC: 2.7-3.6x2.7-3.3 X Shul’'man 1966
(Syn: Leptotheca krogiusi) O. gorbuscha, O. mykiss,

O. tshawytscha, Salvelinus

alpinus, S. leucomaenis
Sphaerospora kwangtungensis Chen, 1998 | Ctenopharyngodon idella GL L:9.5,T:7.6,T: 7.6, PC: 3.1x2.9 X Chen & Ma 1998
Sphaerospora leuciscusi Longshaw, 2004 Leuciscus leuciscus RT L:5.56, T:5.87, PC: 2.35 X Longshaw 2004
Sphaerospora lieni Feng et Wang, 1990 Hypophthalmichthys molitrix RT L:11.75, T: 10, PC: 5.4x5 X Chen & Ma 1998



http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?genid=1011
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatget.asp?spid=54196
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Table 2 continued

Sphaerospora lobosa (Davis, 1917) (Syn: Paralichthys dentatus uB L: 9-10, T: 16-18, PC: 3x3 X Davis 1917
Leptotheca lobosa)
Sphaerospora luciopercae Moshu, 1992 Sander lucioperca ov L: 7.6 (7.2-9.6), T: 6.2 (5-7), PC: 3.8 (3— X Moshu 1992
4)x 3.0 (2.5-3.6)
Sphaerospora lutjani (Kpatcha, Diebakate Lutjanus fulgens KD L: 6.06, T: 8.95, PC: 2.12x2.12 X Kpatcha et al.
et Toguebaye, 1996) (Syn: Leptotheca 1996
lutjani)
Sphaerospora mackenzii (Kalavati et Rao, Fejervarya limnocharis uB L: 10.2, T: 15.6, PC: 6.2x4.8 X Kalavati & Rao
2005) (Syn: Leptotheca mackenzii) 2005
Sphaerospora markewitschi Donets, 1962 Gymnocephalus acerina, RT L:10.8-11.2, W: 10.8-11.7, T: 9.5-10.8, X Shul’man 1966
Gymnocephalus cernua PC: 5.5x4.2

Sphaerospora masovica Cohn, 1902 Abramis brama GB, IN D:8x8 X Kudo 1919
Sphaerospora mayi Moser, Kent et Dennis, | Atherinomorus lacunosus GB L: 4-6, W: 4-5, T: 3-3.5, PC: 2x1 X Moser et al. 1989
1989
Sphaerospora melenensis Fomena, Oreochromis niloticus KD L:9-10, T: 7.5-9.5, PC: 3-4.5x 2.5-4 X Fomena et
Marques et Bouix, 1993 al.1993
Sphaerospora minima Kaschkovsky, Rutilus rutilus UB L: 6-7.7, T: 5.4-6, PC: 2.8-3x 2.3-2.8 X Kaschkovsky,
Razmashkin et Skripchenko, 1974 Razmashkin &

Skripchenko 1974
Sphaerospora minuta Konovalov, 1967 Chanodichthys mongolicus UB L:6.2-7.3, W: 5.8-6.8, T: 5, PC: 2.9-3.3x X Konovalov 1967

2.6-2.8

Sphaerospora molnari Lom, Dykova, Cyprinus carpio BL, GL, L:10.3, T: 10.5, PC: 4.5x 4.3 JX431510-11, Lom et al. 1983a
Pavlaskova et Grupcheva, 1983 SW, SK AF378345
Sphaerospora motemarini Holzer, Lutjanus griseus GM, L:16.31, T: 19.85, PC: 6.47x 6.43 KC526873 Holzer et al.
Peckovad, Patra, Brennan, Yanes-Roca et RT, RI 2013b
Main, 2013
Sphaerospora mugili Yurakhno et Maltsev, | Mugil cephalus GB L:4.5-5.8, W: 3.8-4.3,T: 4.1-6.2, PC: 1.7 X Yurakhno &
2002 —2.5x1.0-1.6 Maltsev 2002
Sphaerospora mugilis (Sitja-Bobadilla et Liza aurata RT,GM  L:23.97,T:20.5, PC: 6.37 X Sitja-Bobadilla &
Alvarez-Pellitero, 1995) (Syn: Alvarez-Pellitero
Polysporoplasma mugilis) 1995
Sphaerospora mystus Xiao et Feng, 1997 Hemibagrus macropterus KD L:10, W: 8.9, T: 8.7, PC: 4x 2.6 X Xiao & Feng 1997
Sphaerospora notropis Fantham, Porter et Notropis cornutus, MS,0C  L:9-11.4,T:9-9.5, PC: 2.7-5.5x1.8-3.6 X Fantham et al.

Richardson, 1939

Catostomus commersoni

1939




Le

Table 2 continued

Sphaerospora ohlmacheri Whinery, 1893 Rana catesbeiana RT L:12.6,T:10.9,PC: 4.4 JX286619; Desser et al. 1986
JX286628
Sphaerospora ojiroveci Dykova et Lom, Pangasius sutchi X L:8,T:5.2, PC: 2.8x 3.5 X Dykova & Lom
1997 1997
Sphaerospora oncorhynchi Kent, Whitaker Oncorhynchus nerka RT L:8.2-10.2, T: 7.8-9.2, PC: 2.9-3.3 AF201373 Kent et al.1993b
et Margolis, 1993
Sphaerospora olsoni Sanders, Jaramillo, Atherinops affinis RT L:6,T:5.8,PC: 2 KJ526213 Sanders et al.
Ashford, Feist, Lafferty et Kent, 2015 2015
Sphaerospora ousei Longshaw, 2004 Rutilus rutilus RT L: 8.46,T:8.21, PC: 3.22 Longshaw 2004
Sphaerospora ovophila Xiao et Desser, Lepomis gibbosus ov L:8.2,W:6.2, T: 7.9, PC: 3x 2.8 Xiao & Desser
1997 1997
Sphaerospora paulini Lom, Desser et Semotilus atromaculatus RT D: 8-8.5, PC: 6.1x6 X Lom et al.1989b
Dykova, 1989
Sphaerospora pectinacea Bocharova et Perca fluviatilis GB, KD, L:8.5,T:10 X Bocharova &
Donetz, 1974 UB, LV, Donetz 1974
MS
Sphaerospora periophthalmi Fantham et Boleophthalmus dussumieri, GB D: 6.6x10.4-11.5 X Fantham & Porter
Porter, 1943 Periophthalmus barbarus 1943
Sphaerospora perlata (Gurley, 1893) (Syn: Gymnocephalus cernuus X X X Gurley 1894;
Leptotheca perlata) Gunter & Adlard
2010
Sphaerospora petruschewskii Schulman, Misgurnus fossilis, UB L:9-12.5, W: 7-7.5, T: 5.5-6, PC: 2.7- X Shul’'man 1966
1962 Misgurnus anguillicaudatus 2.9x2
Sphaerospora plagiognathopis (Chen et Plagiognathops microlepis ov L:7.2,T:7.6,PC:2.4-2.5 X Chen & Hsieh
Hsieh, 1984) (syn: Podospora 1984
plagiognathopis)
Sphaerospora platessae Woodcock, 1904 Pleuronectes platessa EY D: 8-9 X Kudo 1919
Sphaerospora poljanskii Kulemina, 1969 Rutilus rutilus RT L: 9.5-10, T: 9-10, PC: 3-4x 2.5-3 X Kulemina 1969
Sphaerospora ranae (Morelle, 1929) Rana dalmatina, RT L:10.1, T: 11.7, PC: 4-5 EF211975; Jirka et al. 2007
Rana temporaria F1417075
Sphaerospora reichenowi Jacob, 1953 Anguilla anguilla IN L:9,T:10,PC: 4 X Jacob & Bremen
1953
Sphaerospora renalis Bond, 1938 Fundulus heteroclitus RT L:9.5,T:9,PC:4.3x 3.5 X Bond 1938
Sphaerospora renicola (Thélohan, 1895) Scomber scombrus RT L:10,T: 8 X Thélohan 1895

(syn: Leptotheca renicola)
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Table 2 continued

Sphaerospora rostrata Thélohan, 1895 Mugil sp. GM L: 10, T:12,PC: 1x 2 X Thélohan 1895
Sphaerospora rota Zaika, 1961 Brachymystax lenok, Leuciscus RT,UB, L:8.4-11,T:9.1-9.8,PC:4.2-5.6x2.8-4.2 X Shul’man 1966

leuciscus baicalensis, Cobitis UR

taenia
Sphaerospora sangmelimaensis Fomena et | Brienomyrus brachyistius, RT L: 8-9, T: 6.5-9, PC: 2.5-4x 2-3 X Fomena & Bouix
Bouix, 1994 Petrocephalus simus, 1994

Hepsetus odoe
Sphaerospora sapae Donets, 1962 Abramis sapa RT L:6-6.7, W: 5.7-6.3, T: 5.4-7.2, PC: 3.6- X Shul’'man 1966

4.3x3
Sphaerospora saurogobii Ma, 1998 Saurogobio dabryi GL, SK, L:10.7, W: 9.5, T: 8.7, PC: 4.1x 3.3 X Chen & Ma 1998
NS

Sphaerospora scardinii EI-Matbouli et Scardinius erythrophthalmus RT, UR L:6.01,T:5.79 X El-Matbouli &
Hoffmann, 1992 Hoffmann 1992
Sphaerospora schulmani (Rumyantsev, Coregonus lavaretus, C. albula UB L:6.5-7.5, T: 7.5-8.5, PC: 3.5x 3.5 X Rumyantsev 1997
1997) (Syn: Leptotheca Schulmani)
Sphaerospora sebasta (Zhao et Song, Sebastes schlegelii GB L: 15.3,T: 15, PC: 2.9 X Zhao et al. 2015
2003) (Syn: Sphaerospora sebastis)
Sphaerospora siluri Molnar, 1993 Silurus glanis RT L:6.8,T: 6.8, PC: 3.1 X Molnér 1993a
Sphaerospora simplex (Kovalova et Zubch- | Hippoglossus hippoglossus UB L: 10.6-12.5, T: 13.3-15.8, PC: 4x4 X Kovalova &
enko, 1984) (Syn: Leptotheca simplex) Zubchenko 1984
Sphaerospora sparidarum (Sitja-Bobadilla Dentex dentex, Sparus aurata GM, L:6.02, T: 10.65, PC: 2.91x2.75 JX286620; Sitja-Bobadilla &
et Alvarez-Pellitero, 2001) (Syn: RT, RI, 1X286629 Alvarez-Pellitero
Leptotheca sparidarum) UB, IN 2001
Sphaerospora sparis (Sitja-Bobadilla et Sparus aurata RT,GM  L:19.83,T:18.14, PC: 6.25x5.9 1X286624; Sitja-Bobadilla &
Alvarez-Pellitero, 1995) (Syn: JX286634 Alvarez-Pellitero
Polysporoplasma sparis) 1995
Sphaerospora sphaerica Dogiel, 1948 Takifugu pardalis UB L: 10, W: 10, PC: 3 X Dogiel 1948
Sphaerospora sphaerula (Noble, 1939) Gibbonsia metzi uB L: 13, T: 13, PC: 4.6x 5 X Noble 1939
(Syn: Leptotheca sphaerula)
Sphaerospora subsphaerica (Zaika, 1963) Coregonus autumnalis UR, RT L: 7-8.4,T:9.8-10.5, PC: 3.5-4.2x 3.5-4.2 X Shul’'man 1966
(Syn: Leptotheca subsphaerica) migratorius, Thymallus arcticus
Sphaerospora testicularis Sitja-Bobadilla et | Dicentrarchus labrax TS L: 11-15, T: 13-18, PC: 2.5-4.5x3.5-4.2 HM230825 Sitja-Bobadilla &

Alvarez-Pellitero, 1990

Alvarez-Pellitero
1990
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Table 2 continued

Sphaerospora tilapiae Fomena, Marques Oreochromis niloticus KD, SP L: 7-8.5, T: 7-8.5, PC: 2.5-3.5 X Fomena et
et Bouix, 1993 al.1993
Sphaerospora tincae Plehn, 1925 Tinca tinca PR L:8,T:7, PC: 2.7x2.5 Plehn 1925
Sphaerospora tongrenensis Xiao et Feng, Siniperca scherzeri KD L: 6, W: 6, T: 6, PC: 3x2 Xiao & Feng 1997
1997
Sphaerospora toxabramis Wu et Li, 1986 Toxabramis swinhonsi ov L: 5.9, W: 5.8, T: 5.85, PC: 2.2x 1.75 X Chen & Ma 1998
Sphaerospora truttae Fischer-Scherl, El- Salmo trutta, Salmo salar, RT L:6.84,T:8.81 AMA410773, Fischer- Scherl et
Matbouli et Hoffmann, 1986 Thymallus thymallus AJ512829, al. 1986
AJ581915,
AJ512831,
AJ512830;
JX286633
JX286639
Sphaerospora umbrae Moshu et Umbra krameri GM,RT  L:6.25,W: 6.2, T:6.25, PC: 1.2-2.5 X Moshu &
Trombitshky, 2007 Trombitsky 2007
Sphaerospora xenocypris Xiao et Feng, Xenocypris macrolepis GL, GB L:8.9, W:8.7,T: 8.8, PC: 4x 3 X Xiao & Feng 1997
1997
Sphaerospora zingeli Moshu etTrombitsky, | Zingel zingel GM, L: 10, T: 7.5, PC: 4.3x3.7 X Moshu &
2008 RT, RI, Trombitsky 2008
Sphaerospora sp. Chelon labrosus RT X JX286625; Barto3ova et al.
JX286635 2013
Sphaerospora sp. Liza ramada RT X JX286626; Bartosova et al.
JX286636; 2013
JX286640
Sphaerospora sp. Mugil curema GB X DQ377695; Fiala 2006
FJ417076
Sphaerospora sp. Pomoxis nigromaculatus RT X JX286621; Bartosova et al.
JX286630; 2013
JX286638
Sphaerospora sp. Ptychadena anchietae RT X JX286622; Bartosova et al.

JX286631

2013




3.3. Phylogeny of the Sphaerospora sensu stricto clade

Figure 7 shows the state of knowledge into phylogeny of the Sphaerospora
s. s. clade (Bartosova et al. 2013) before the addition of our novel sphaerosporid data
(Patra et al. In Prep.: Paper VI). Clustering of its members reflects certain biological
features such as habitat type or host group (fish/amphibian) as well as morphological
(number of sporoplasms) and sequence features (GC content, introns) (BartoSova et
al. 2013).
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Figure 7: 18S rDNA-based maximum likelihood tree of myxozoan sequences showing
Sphaerospora sensu stricto clade as a sister clade to marine myxosporeans. Clustering
pattern based on different biological characters is also mentioned within the figure. The
position of Sphaerospora sensu lato species in the tree is indicated within the brackets
(BartoSova et al. 2013).
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The clade is divided into two lineages: i) lineage A including species only
from marine fish that have a single binucleated sporoplasm (except Sphaerospora
epinepheli Supamattaya, Fischer-Scherl, Hoffmann et Boonyaratpalin, 1991) and
shorter AT-rich rDNA inserts (Bartosova et al. 2013; Fiala 2006; Karlsbakk & Kgie
2009), and ii) lineage B with 2—12 uninucleate sporoplasms and longer, GC-rich rDNA
inserts. Lineage B further divides into two clades: 1) species from fish hosts and, 2)
species from amphibian hosts. The fish clade of lineage B further splits into three
subclades according to host habitat: a) species from strictly freshwater fish, b)
species from freshwater/brackish and anadromous fish and, c) polysporoplasmid
species from marine/brackish hosts (BartoSova et al. 2013). More recently described
species, S. motemarini and Sphaerospora olsoni Sanders, Jaramillo, Ashford, Feist,
Lafferty et Kent, 2015 (Holzer et al. 2013b: Paper |; Sanders et al. 2015) as well as all
the species recognized in our current study (Patra et al. In Prep.: Paper VI) cluster
according to the abovementioned patterns.

Cophylogeny studies can help to understand host-parasite interactions,
coevolution and adaptation (Song et al. 2015; Filipiak et al. 2016). Until recently,
cophylogeny of myxozoans and their hosts has not been studied (Holzer et al. In
Prep.). Successful myxozoan coadaptation with highly diverged vertebrate and
invertebrate hosts may reflect corresponding host-parasite co-evolutionary
patterns. Likewise, the wide vertebrate host range of the Sphaerospora s. s. dataset
presents itself as an optimal candidate to understand the co-evolutionary strategies
of these groups.

3.4. Life cycle dilemma

Similar to all other myxozoans, sphaerosporids are believed to have an
indirect life cycle, alternating between two hosts (Bartosova et al. 2013; Jirk( &
BartoSova-Sojkova 2014). In order to reveal the definitive invertebrate host and
determine the complete life cycle of Sphaerospora species, various experimental
trials were performed. Transmission of spores in kidney homogenates of common
carp infected with S. dykovae to Branchiura sowerbyi Beddard, 1892 (Oligochaeta)
resulted in the production of neactinomyxum-type spores with 37% prevalence in
the invertebrate host (Molnar et al. 1999b). In comparison with natural infection
levels in oligochaetes (e.g. Holzer et al. 2004, Rangel et al. 2016, Zhao et al. 2016),
this prevalence is extraordinary high and seems to confirm the experimental
outcome. However, Eszterbauer et al. (2006) sequenced a neoactinomyxum-type
actinospore of identical dimensions from the same oligochaete species, which
showed molecular similarity to Thelohanellus spp. and not Sphaerospora s. s. (~20%
18S rDNA dissimilarity). Morphologically extremely similar actinosporeans may
represent distantly related myxozoan genera (Eszterbauer & Székely 2004) or, vice
versa (Eszterbauer et al. 2006), hence, molecular proof for the S. dykovae infection
experiment is urgently required to proof/disproof this life cycle. Echinactinomyxon
stages from Lumbriculus variegatus and Tubifex tubifex (Miiller, 1774) (Oligochaeta)
were believed to represent alternate spore stages of S. truttae, as proven by
experimental infection (Ozer & Wootten 2000). This report was later proven wrong
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based on 18S DNA sequence analyses (Holzer et al. 2004). Recently, tetractinomyxon
stages from Capitella sp. (Polychaete) were found to belongto S. dicentrarchi (Rangel
et al. 2016). However, S. dicentrarchi is not a member of Sphaerospora s. s. (see
section 3.2) (Kent et al. 2001; Bartosova et al. 2009). Based on the knowledge
obtained from molecular data, it is now evident that a definitive invertebrate host
for Sphaerospora s. s. is yet to be determined.

3.5. Extrasporogonic proliferation in fish blood

Using in situ hybridisation, the development within the fish host was
extensively studied for S. truttae which confirmed the gills as the portals of entry of
sphaerosporids into fish (Holzer et al. 2003). Proliferative blood stages were found
only three days after infection, while sporogonic stages were found in the kidney
tubules 25 days after initial infection and the appearance of mature spores took
another 15 days after the detection of early sporogonic stages. In contrast to many
myxozoans that are known to use the blood stream for transport to the target organ
(Johnson 1980; Kent & Hedrick 1985; Moran et al. 1999a; b; Bjork & Bartholomew
2010; Holzer et al. 2013: Paper 1), extrasporogonic stages of various Sphaerospora s.
s. actually proliferate in the blood being a hallmark of this parasite clade (Baska &
Molnar 1988; Lom et al. 1983b; 1991a; Supamattaya et al. 1993, Holzer et al. 2014).
In S. dykovae, small blood stages initially contain only one secondary cell inside the
primary cell. Division of the secondary cell ultimately generates eight secondary cells,
which later contain one tertiary cell each (Lom & Dykova 1992). Thereafter the
primary cell disintegrates and releases all secondary cells, which hence become
primary cells again and the proliferative cycle continues. In S. truttae, up to 120
secondary cells can be found (Holzer et al. 2003). Blood stages can reach all organs
with the blood flow. Within the rete mirabile of the swim bladder of carp, blood
stages of S. dykovae obstruct fine blood vessels, become histozoic and start further
proliferation, creating a strong host cell response resulting in SBI. Other areas with
small blood vessels such as the kidney and choroidal rete mirabile can accumulate
blood stages causing inflammatory responses (Lom et al. 1991; Molnar 1993b).
Eventually, after reaching the kidney, sphaerosporids penetrate the epithelial cells
of the renal tubules and start further proliferation and sporogony in the intratubular
space, with spores being released via the urine (Holzer et al. 2003; Lom et al. 1991;
Molnar et al. 1993b).

Motile sphaerosporid blood stages were first described as ‘Unidentified
Blood Objects’ (UBOs) (Csaba 1976) in carp without knowing that they belonged to
the Myxozoa. A little later, morphologically similar stages from the intratubular
space in the renal tubule (Molnar 1980) and histozoic multicellular ‘K-stages’ within
the swim bladder causing SBI in common carp (Korting 1982; Kovacs-Gayer et al.
1982) were described. The link between C-, K- and intratubular stages was made
based on their similar morphological characteristics and development, their
simultaneous occurrence in infected fish and based on experimental trials focusing
on the transmission of C- and K-stages from infected fish to SPF receptor fish. Until
recently, these stages were related to S. dykovae, however, recent molecular
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methods have demonstrated that S. molnariis the predominant species in carp blood
and an important co-factor for S. dykovae-based SBI (Holzer et al. 2014: Paper lIl).
Mixed infections of these two species are the rule (A. S. Holzer pers. comm.).
Successful experimental transmission of sphaerosporid blood stages via
intraperitoneal injection into uninfected receptor fish has been reported for several
species (McGeorge et al. 1994; Csaba et al. 1984; Molndr & Kovdacs-Gayer 1986;
Korting et al. 1989; Csaba 1976; Patra et al. 2014; Hartigan et al. 2015).

Recently, a comprehensive study was conducted to understand the unique
motility of S. molnari and potentially other sphaerosporid (Baska & Molnar 1988;
Lom et al. 1985) blood stages where the function of this movement was related to
evasion from host immune cells (Hartigan et al. 2016b: Paper IV). In S. molnari, the
primary cell membrane creates and rapidly reabsorbs folds that are used like
rudders, moving the parasite around its own axis, making host cell attachment
difficult (Hartigan et al. 2016b: Paper IV).

Chapter 4. Objectives of the research

On initiation of the present thesis, the two myxozoan clades of focus in this
thesis, i.e. Malacosporea and Sphaerospora s. s. belonged to the most species
deficient myxozoan lineages, due to the cryptic nature of their representatives and
difficulties with obtaining molecular data for their characterisation. Only three
malacosporean and 24 sphaerosporid taxa had been characterised molecularly. The
main aims of the thesis were to improve the knowledge of these poorly characterized
lineages by:

e Exploring their species diversity by morphological and molecular
examination of fish hosts

e Determining phylogenetic relationships between newly sequenced
members and relating the patterns of clustering to morphological,
environmental and biological factors, including host-parasite coevolution

o |dentifying valid taxonomic characters for myxozoan species descriptions to
avoid misidentifications

e Performing experimental transmissions between vertebrate and
invertebrate hosts and establishing life cycles in controlled laboratory
systems

o Determining the etiological agents of myxozoan diseases using molecular
methods

e Understanding the mechanisms and function of S. molnari blood stage
motility
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Chapter 5. Results and the research papers |

5.1. Published paper |

Holzer AS, Peckova H, Patra S, Brennan NP,
Yanes-Roca C, Main KL

Severe glomerular disease in juvenile grey snapper Lutjanus
griseus L. in the Gulf of Mexico caused by the myxozoan
Sphaerospora motemarini n. sp.

International Journal for Parasitology: Parasites and Wildlife (2013).
2:124-130.

doi: 10.1016/j.ijppaw.2013.03.003

This part is comprised of 7 pages published data, which is present in
the original thesis deposited at the Faculty of Science,
University of South Bohemia
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Abstract

In the eastern Gulf of Mexico, off the coast of Florida, grey snapper, Lutjanus
griseus was found to be infected with the myxozoan parasite Sphaerospora
motemarini n. sp., with high prevalence (83%) and intensity of infection occuring in
age-0 fish, and with parasite levels decreasing with age (age-1 snapper 40%; age-2
snapper 0%). The morphological, molecular and phylogenetic characterisation of the
myxozoan showed that it is a member of the typically marine, polysporoplasmid
Sphaerospora spp. which form a subclade within the Sphaerospora sensu stricto
clade of myxozoans, which is characterised by large expansion segments in their SSU
rDNA sequences. Presporogonic stages of S. motemarini n. sp. were detected in the
blood, using PCR. Pseudoplasmodia and spores were found to develop in the renal
corpuscles of the host, causing their massive expansion. Macroscopic and
histopathological changes were observed in age-0 fish and show that S. motemarini
n. sp. causes severe glomerulonephritis in L. griseus leading to a compromised host
condition, which makes it more susceptible to stress (catch-and-release, predators,
water quality) and can result in mortalities. These results are discussed in relation to
the exploitation of grey snapper populations by commercial and recreational
fisheries and with the observed increased mortalities with temperature along the
coast of Florida. In the future, we would like to determine prevalence and intensity
of infection with S. motemarini n. sp. in juvenile L. griseus in different areas of the
Gulf of Mexico in order to be able to estimate the temperature dependence of S.
motemarini n. sp. proliferation and to be able to predict its distribution and severity
during climatic changes in the Gulf.
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Abstract

Malacosporeans represent a small fraction of myxozoan biodiversity with
only two genera and three species described. They cycle between bryozoans and
freshwater fish. In this study, we (i) microscopically examine and screen different
freshwater/marine fish species from various geographic locations and habitats for
the presence of malacosporeans using PCR; (ii) study the morphology, prevalence,
host species/habitat preference and distribution of malacosporeans; (iii) perform
small subunit/large subunit rDNA and Elongation factor 2 based phylogenetic
analyses of newly gathered data, together with all available malacosporean data in
GenBank; and (iv) investigate the evolutionary trends of malacosporeans by mapping
the morphology of bryozoan-related stages, host species, habitat and geographic
data on the small subunit rDNA-based phylogenetic tree. We reveal a high
prevalence and diversity of malacosporeans in several fish hosts in European
freshwater habitats by adding five new species of Buddenbrockia and
Tetracapsuloides from cyprinid and perciform fishes. Comprehensive phylogenetic
analyses revealed that, apart from Buddenbrockia and Tetracapsuloides clades, a
novel malacosporean lineage (likely a new genus) exists. The fish host species
spectrum was extended for Buddenbrockia plumatellae and Buddenbrockia sp. 2. Co-
infections of up to three malacosporean species were found in individual fish. The
significant increase in malacosporean species richness revealed in the present study
points to a hidden biodiversity in this parasite group. This is most probably due to
the cryptic nature of malacosporean sporogonic and presporogonic stages and
mostly asymptomatic infections in the fish hosts. The potential existence of
malacosporean life cycles in the marine environment as well as the evolution of
worm- and sac-like morphology is discussed. This study improves the understanding
of the biodiversity, prevalence, distribution, habitat and host preference of
malacosporeans and unveils their evolutionary trends.

43



5.3. Published paper Il 1

Holzer AS, Hartigan A, Patra S,
Peckova H, Eszterbauer E

Molecular fingerprinting of the myxozoan community in
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Background:

Swim bladder inflammation (SBI) is an important disease of common carp
fingerlings in Central Europe. In the 1980s, its etiology was ascribed to multicellular
proliferative stages of the myxozoan parasite Sphaerospora dykovae (formerly S.
renicola). S. dykovae was reported to proliferate in the blood and in the swim bladder
prior to the invasion of the kidney, where sporogony takes place. Due to the
presence of emerging numbers of proliferative myxozoan blood stages at different
carp culture sites in recent years we analysed cases of SBI, for the first time, using
molecular diagnostics, to identify the myxozoan parasites present in diseased swim
bladders.

Methods:

We amplified myxozoan SSU rDNA in a non-specific approach and compared
the species composition in swim bladders at culture sites where carp demonstrated
1. No signs of SBI, 2. Minor pathological changes, and 3. Heavy SBI. Based on DNA
sequences, we determined the localisation and distribution of the most frequent
species by in situ hybridisation, thereby determining which myxozoans are involved
in SBI.

Results:

Large multicellular myxozoan swim bladder stages characterised heavy SBI
cases and were identified as S. dykovae, however, blood stages were predominantly
represented by Sphaerospora molnari, whose numbers were greatly increased in
carp with mild and heavy SBI, compared with SBI-free fish. S. molnari was found to
invade different organs and cause inflammatory changes also in the absence of S.
dykovae. One site with mild SBI cases was characterised by Buddenbrockia sp.
infection in different organs and a general granulomatous response.

Conclusions:

We provide evidence that the etiology of SBI can vary in relation to culture
site and disease severity and that emerging numbers of S. molnari in the blood
represent an important co-factor or precondition for SBI.
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5.4. Published paper IV
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New cell motility model observed in parasitic cnidarian
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blood stages in fish.

Scientific Reports (2016). 6:39093.

doi: 10.1038/srep39093.

This part is comprised of 27 pages published data, which is present in
the original thesis deposited at the Faculty of Science,
University of South Bohemia

81



Abstract

Cellular motility is essential for microscopic parasites, it is used to reach the host,
migrate through tissues, or evade host immune reactions. Many cells employ an
evolutionary conserved motor protein- actin, to crawl or glide along a substrate. We
describe the peculiar movement of Sphaerospora molnari, a myxozoan parasite with
proliferating blood stagesin its host, common carp. Myxozoa are  highly
adapted parasitic cnidarians alternately infecting vertebrates and invertebrates.
S. molnari blood stages (SMBS) have developed a unique "dancing" behaviour, using
the external membrane as a motility effector to rotate and move the cell. SMBS
movement is exceptionally fast compared to other myxozoans, non-directional and
constant. The movement is based on two cytoplasmic actins that are highly divergent
from those of other metazoans. We produced a specific polyclonal actin antibody for
the staining and immunolabelling of S. molnari's microfilaments since we found that
neither commercial antibodies nor phalloidin recognised the protein or
microfilaments. We show the in situ localization of this actin in the parasite and
discuss the importance of this motility for evasion from the cellular host immune
response in vitro. This new type of motility holds key insights into the evolution of
cellular motility and associated proteins.
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5.5. Published paper V
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Description and experimental transmission of
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Abstract

This paper provides the first detailed description of a Tetracapsuloides species,
Tetracapsuloides vermiformis n. sp., with vermiform stages in the bryozoan host,
Fredericella sultana, and its experimental transmission from F. sultana to Cyprinus
carpio. The suitability of morphological, biological and 18S rDNA sequence data for
discrimination between malacosporean species is reviewed and recommendations
are given for future descriptions. Presently, malacosporean species cannot be
differentiated morphologically due to their cryptic nature and the lack of differential
characters of spores and spore-forming stagesin both hosts. We examined
biological, morphological and molecular characters for the present description and
for revising malacosporean taxonomy in general. As a result, Buddenbrockia
plumatellae was split into two species, with its sac-like stages being ascribed to
Buddenbrockia bryozoides n. comb. In addition to ribosomal DNA sequences multiple
biological features rather than morphological characters are considered essential
tools to improve malacosporean taxonomy in the future according to our analysis of
the limited traits presently available.
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Abstract

Sphaerospora sensu stricto clade is the most basal myxosporean clade
within the Myxozoa (Cnidaria) that groups the parasites of predominantly urinary
system of marine and freshwater fishes and amphibians. Sphaerosporids are unique
by extremely long insertions in the variable regions of their 18S and 28S rDNA and
by formation of motile proliferative stages in hosts” blood. In present study, we
microscopically and molecularly examined over 530 fish kidney samples from various
geographic locations, mainly in Central Europe, to investigate the sphaerosporid
biodiversity. Moreover, we performed the comprehensive phylogenetic analyses of
newly gathered and existing 18S rDNA data of Sphaerospora spp. to explore the
evolutionary trends within the Sphaerospora sensu stricto clade. We also
implemented different cophylogenetic analyses of sphaerosporids and their
vertebrate hosts to understand the host-parasite coevolution strategies. We
revealed a high diversity of Sphaerospora spp. mainly in freshwater habitats by
amplifying thirteen new sphaerosporids 185 rDNA sequences from which one
belongs to the presently re-described Sphaerospora diminuta. The remaining half of
sequences, accompanied by morphological data, represents new Sphaerospora spp.
Sphaerosporids cluster within their clade according to vertebrate host type, host
family and habitat. Cophylogenetic analyses revealed highly significant congruence
between the evolutionary history of sphaerosporids and their vertebrate hosts with
cyprinids representing a host group of multiple parasite lineages and frequent host
switching. This study significantly improved our understanding of the biodiversity,
habitat and host preference of sphaerosporids and unveiled interesting aspects of
host-parasite co-evolution.
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Chapter 6. Summary and general discussion

The most important outcomes from my Ph.D. thesis are:

1) Revealing the hidden biodiversity, cryptic species nature and phylogenetic
relationships of the poorly characterized but highly diverse myxozoan clades
Malacosporea and Sphaerospora s. s. in Central Europe

2) Cophylogeny of sphaerosporids and their vertebrate hosts in the light of recent
evolutionary discoveries

3) Revision of taxonomy based on a synthesis of biological and molecular
phylogenetic data

4) Elucidation of myxozoan life cycles under controlled experimental conditions

5) Discovery of the hidden etiology of swim bladder inflammation in common carp
using in situ hybridisation

6) Discovery of a new type of cellular motility in eukaryotes in blood stages of
Sphaerospora molnari and its contribution to host immune cell evasion

6.1. Revealing the hidden biodiversity, cryptic species nature and phylogenetic
relationships of the poorly characterized but highly diverse myxozoan clades
Malacosporea and Sphaerospora s. s. in Central Europe

At the beginning of my thesis, only three nominal species of the
Malacosporea were described along with the additional three futher undescribed
species. However, malacosporean biodiversity had been predicted much higher
(Massard & Geimer 2008), an estimate that was first confirmed when Hartikainen et
al. (2014) discovered five new species from bryozoan hosts. Subsequently, we
discovered other five new malacosporean species after screening over 500 fish,
predominantly from Central Europe (BartoSova-Sojkova et al. 2014: Paper Il), by
molecular methods. In most cases, infections were not detected by microscopy or
cryptic sporogonic or presporogonic stages were detected in an early sporogonic
stage (no mature spores). Morphological similarity of pseudoplamodia of
malacosporeans and sphaerosporids or species of Hoferellus Berg, 1898 and
Ortholinea Shul’'man, 1962 causes difficulties for species identification and
discrimination.

In bryozoan hosts, early covert unicellular stages are impossible to identify
under the stereomicroscope (Tops et al. 2009; Hartikainen & Okamura 2012). DNA
sequencing and comprehensive 18S rDNA-based phylogenetic analyses with all
available malacosporean species revealed phylogenetic clustering of the taxa in five
distinct clades including Buddenbrockia, Tetracapsuloides and three novel lineages
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(Fiala et al. 2015b; Patra et al. 2017: Paper V). A comparative analysis of
morphological features for comparison and identification of malacosporean species
in either of their hosts showed that spores are virtually indistinguishable between
species or even genera, and that identical plasmodial morphotypes evolved more
than once in the Malacosporea. As a consequence, 18S rDNA sequence data are an
absolute necessity for the description of new species and only DNA-based methods
allow for the elucidation of the true malacosporean diversity (Patra et al. 2017: Paper
V).

Another problem had previously impeded phylogenetic characterisation of
members of Sphaerospora s. s. This phylogenetic clade was relatively recently
established, with 18S rDNA sequences of only four members available at that time
(Jirkd et al. 2007), and it was enriched by studies, mainly from our laboratory, to a
total of 32 taxa to date after excluding sensu lato members (BartosSova et al. 2013;
Eszterbauer et al. 2013; Holzer et al. 2013a; b: Paper |; Sanders et al. 2015; Patra et
al. In Prep.: Paper VI). This included an enormous effort regarding amplification of
their sequences and subsequent taxonomic reassignments. Sphaerosporid
proliferative stages found amongst host blood cells and spore-forming stages are
small, mostly disporous, embedded in the renal tubules. Physical isolation of the
parasite from hosts’ tissue is very difficult (Holzer et al. 2003). This situation is further
complicated by difficulties related to molecular isolation. Members of Sphaerospora
s. s. possess some of the longest insertions in the variable regions of 18S rDNA
amongst all eukaryotic organisms (Holzer et al. 2007; Bartosova et al. 2013;
Eszterbauer et al. 2013). Amplification of complete 18S rDNA sequences with general
eukaryotic or myxozoan-specific 18S rDNA primer combinations generally fail due to
unique species-specific insertions and preferential amplification of shorter
fragments from DNA of other myxozoans often present in coinfections (BartoSova et
al. 2013). To overcome this situation, we progressively designed sets of primers
based on newly acquired 18S rDNA of sphaerosporids. Our results characterize
Sphaerospora s. s. as a monophyletic clade based on 18S rDNA which was supported
by 28S rDNA and EF2 sequence data and shine light on the factors affecting clustering
of its representatives (Bartosova et al. 2013; Holzer et al. 2013b: Paper |; Patra et al.
In Prep.: Paper VI). Apart from phylogenetic and evolutionary studies, new
sequences may also aid the future discovery of the still unconfirmed definitive host
of this myxozoan clade by possible sequence match(es) of existing Sphaerospora
sequences with sequence data of actinosporean stages obtained from invertebrate
hosts.

Regarding both, malacosporeans and sphaerosporids, Central Europe has
proven to be a biodiversity hotspot (Lom et al. 1985; Baska & Molnar 1988;
Bartosova-Sojkova et al. 2014: Paper Il), where they as they are common in cyprinid
vertebrate hosts. However, to be less host biased, future studies could employ a host
independent approach, for example screening and analyses of environmental DNA
(eDNA) from water and sediment samples, a method with a large potential for an
efficient exploration of the biodiversity of aquatic species (Biggs et al. 2015;
Bohmann et al. 2014; Deiner & Altermatt 2014; Laramie et al. 2015; Stewart et al.
2017). An initial study in myxozoans showed that screening of environmental
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samples and faeces of piscivorous animals is more than promising for estimating the
unknown myxozoan biodiversity (Bass et al. 2015; Hartikainen et al. 2016), as water
contains all transmitting actinosporean and myxosporean stages, also those of rare
and so far undescribed species. However, considering the aberrant 18S rDNA
sequences of sphaerosporids, detection assays will have to be carefully designed.

The present thesis has greatly improved our knowledge of taxa belonging to
the Malacosporea and Sphaerospora s. s. This is of particular importance as
Malacosporea is the most basal lineage of the myxozoans, which possesses various
unique morphologies (radial symmetry, spore forming motile vermiform stages etc.),
recalling towards ancestral cnidarian origin (Jiménez-Guri et al. 2007a). This lineage
is considered to be evolutionary older and diverged before the rest of the myxozoan
lineages evolved (Anderson et al. 1999; Kodadkova et al. 2015). Sphaerospora s. s. as
a sister clade to either of the two remaining myxosporean lineages or basal to all
myxosporeans is also unique due to the development of its members
(extrasporogonic stage) and long 18S rDNA inserts reflecting evolutionary patterns
that differ from the rest of the myxozoans. Studying these two lineages can enrich
our knowledge into the evolution, including origins and divergence of myxozoans
from their free-living cnidarian counterparts.

6.2. Cophylogeny of sphaerosporids and their vertebrate hosts in the light of
recent evolutionary discoveries

Host-parasite cophylogeny studies have proven of enormous importance for
reconstructing the common history of host-parasite taxa and to understand primeval
relationships (Baudet et al. 2015). Recently, the evolution and congruence of
phylogenetic trees of the Myxozoa and both, their invertebrate and vertebrate hosts
was studied for the very first time, including also a comprehensive molecular clock
analyses for the timing of events (Holzer et al. In Prep.). Due to the distant
relationship of the vertebrate host dataset and the minimal number of taxa available
(19 parasites, 19 hosts) in this previous study global fit between the phylogenies of
Sphaerospora s. s. and their vertebrate hosts was not detected, despite significant
congruence estimated by tree-based methods. After combining an additional 13-
sphaerosporid 18S rDNA sequences and 11 hosts to the dataset, highly significant
congruence was detected by all cophylogenetic methods (Patra et al. In Prep.: Paper
VI). Since sphaerosporids are likely evolutionary older than the rest of the annelid-
infecting myxozoan lineages, and based on the assumption that myxozoans first used
invertebrate hosts only (Holzer et al. In Prep.), archiannelids (polychaetes belonging
to the Haplodrilii) or sipunculids present themselves as excellent candidates for the
first hosts of sphaerosporids. It would also support the idea of a marine origin of
sphaerosporids, whose most basal clade is represented by sequences exclusively
from marine teleosts (BartoSova et al. 2013, Patra et al. In Prep.: Paper VI). Ikeda
(1912) detected two different morphotypes of actinosporeans in Petalostoma
minutum (Keferstein, 1862) (= Nephasoma minuta) off the UK coast. It would be
extremely interesting to obtain 18S rDNA sequences from myxozoans in sipunculids
to prove this hypothesis. Additionally, rDNA sequences of sphaerosporids in
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evolutionary older, cartilaginous fishes would add another piece to the puzzle of the
origins of sphaerosporids. The only described species is Sphaerospora araii Arthur et
Lom, 1985 from Raja rhina Jordan et Gilbert, 1880 but other species may well exist
in modern sharks, rays and chimaeras, potentially representing ‘old sphaerosporids’
in ‘old hosts’, similar as the most basal lineages in all other annelid-infecting
(polychaete and oligochaete-infecting) myxozoan clades (Gleeson & Adlard 2011;
2012; Koddadkova et al. 2015). In future, extensive screening of various ‘old’
vertebrate and invertebrate hosts may be able provide exciting proof for these
hypotheses on the early history of sphaerosporid evolution.

6.3. Revision of taxonomy based on a synthesis of biological and molecular
phylogenetic data

Since the early discoveries of myxozoans in their fish hosts, spore
morphology was the main criterion used for myxozoan descriptions and
classification (Kudo 1933; Tripathi 1948; Shul’'man 1966). Integration of other basic
biological data such as host group/species, habitat, host tissue specificity or
characteristics of developmental stages are now additional requirements for
taxonomic descriptions (Lom & Arthur 1989).

While morphological descriptions were previously the only means of
distinguishing between different myxozoan species, we have now acquired a large
database of 185 rDNA GenBank sequences. This helped us to discover ‘true’
relationships and to understand biological features that reflect the patterns of
phylogenetic clustering (see details in Chapter 1.2). As these patterns are of special
importance for the evolution of the Myxozoa they are hence likely good features for
systematics. We have to be aware of the fact that spores are ecological
morphotypes, since their shape is likely determined by the optimisation of
transmission strategies and dispersion in the environment (Fiala & Bartosova 2010;
Fiala et al. 2015b). This may explain why spore morphology contradicts molecular
phylogeny to a great degree (Holzer et al. 2004; Fiala 2006; Bartosova & Fiala 2011;
Rocha et al. 2013; Karlsbakk et al. 2017) while a number of other characters are
important for the design of a new, more ‘accurate’ taxonomic system of the
Myxozoa. Only the combination and careful evaluation of morphological and
ultrastructural cell development data from both hosts, alongside host characteristics
and molecular phylogeny allows for a holistic approach and an accurate design of
guidelines for myxozoan descriptions (for malacosporeans see Patra et al. 2017:
Paper V).

6.4. Elucidation of myxozoan life cycles under controlled experimental
conditions

Myxozoans are known to have indirect two-host life cycles. A total of 53
myxozoan life cycles are described, with about three quaters being molecularly
confirmed (section 1.3). Only one complete life cycle is known from malacosporeans
(T. bryosalmonae) (Feist et al. 2001; Morris & Adams 2006b) but two further are
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partially confirmed (Grabner & El-Matbouli 2010a; Patra et al. 2017: Paper V). The
definitive invertebrate host group of Sphaerospora s. s. remains unconfirmed until
alternate spore stages are sequenced. The poor knowledge of life cycles in these two
phylogenetic clades prompted us to screen aquatic invertebrates and perform
infection experiments (Patra et al. 2013; Patra et al. 2014; Patra et al. 2017: Paper
V).

Over the last four years, we PCR screened over 576 aquatic invertebrates
from different S. molnari and S. dykovae enzooic ponds in the Czech Republic and
Hungary, but did not find any infected hosts. Water samples from a number of ponds
confirmed the presence of S. molnariinfective spores in the water column, at several
sites, but PCR detection was limited to the month of May and June. The narrow
window of release may explain why Sphaerospora s. s.-infected invertebrates are so
difficult to find. Finally, we decided to perform a less targeted but more controlled
laboratory experiment by exposing invertebrate-rich sediments to SPF carp, in
isolated aquaria. Oligochaete-rich muddy sediments did not result in infection of fish
with malacosporeans or sphaerosporids but cohabitation of fish with invertebrate
fauna on twigs and stones resulted in infection with S. molnari (100% prevalence,
Patra et al. 2013; 2014) and T. vermiformis (Patra et al. 2017: Paper V), hence
narrowing down the microhabitat of invertebrate hosts. We later found vermiform
stages of T. vermiformis in the bryozoan host F. sultana, resulting in successful
transmission of the forth malacosporean species to date (Patra et al. 2017: Paper V).

Mixed infections in invertebrate and vertebrate hosts are a major problem
when aiming to provide experimental proof of myxozoan life cycles. These issues
have led to confusion and misidentifications in the past, that were only discovered
after DNA sequencing of these wrongly ascribed life cycle stages (e.g. Holzer et al.
2004; Eszterbauer et al. 2006). Controlled experimental conditions in isolated
aquaria systems and the use of SPF hosts (vertebrate and invertebrate cultures)
prevent contamination and are of great advantage for studying the developmental
cycles and pathological changes induced by individual species in the absence of other
myxozoans and other aquatic parasites (e.g. common ectoparasites). It is essential
to elucidate more myxozoan life cycles, especially from phylogenetic groups where
little such information is available. It is furthermore important to go beyond relating
a morphotype from a vertebrate host to one from the invertebrate host and to
investigate the biological differences in myxozoan development between members
of different evolutionary clades or between pathological vs. non-pathological
species. As in our study on T. vermiformis, it is of importance to collect a multitude
of data, from light microscopy to ultrastructure and molecular information, hence
providing more comprehensive data on different parasite stages as these are
required for a more holistic understanding of myxozoan life cycles and development.

6.5. Discovery of the hidden etiology of swim bladder inflammation in common
carp using in situ hybridisation

In Central Europe, SBI causes up to 100% mortality in fingerlings of common
carp (Waluga & Budzynska 1980). In the 1980s, S. dykovae was believed to be the

190



causative agent of the disease due to the morphological similarity of parasite
developmental stages in the blood, the swim bladder and the renal tubules (Molnar
& Kovacs-Gayer 1986). Based on our recent finding of emerging numbers of
sphaerosporid blood stages in European carp ponds (Holzer et al. 2014: Paper Ill) and
their molecular identification as S. molnari (Eszterbauer et al. 2013), we decided to
reinvestigate the myxozoan species involved in SBI, using molecular methods (PCR
and in situ hybridisation). Large multicellular swim bladder stages, which
characterise heavy SBI cases, were identified as S. dykovae. However, blood stages
were predominantly represented by S. molnari, whose numbers were greatly
increased in carp with mild and heavy SBI, compared with SBI-free fish (Holzer et al.
2014: Paper lll). S. molnari was found to invade different organs and cause
inflammatory changes also in the absence of S. dykovae. One site with mild SBI cases
was characterised by unknown Buddenbrockia sp. infection in different organs and
a general granulomatous response. We provided evidence that the etiology of SBI
can vary in relation to culture site and disease severity and that emerging numbers
of S. molnari in the blood represent an important co-factor or precondition for SBI
(Holzer et al. 2014: Paper lll). Future studies should aim at determining changes in
the number of blood stages in relation to temperature. Water temperatures in
European freshwater habitats have increased by 1-3°C over the last century (EEA
2012). Proliferation at high temperatures is expected to happen faster, hence
potentially linking the observation of higher blood stage numbers in carp to climate
change in Central Europe. Design of a quantitative PCR assay and monitoring of
infected fish over time could provide substantial data for estimating changes along
with future temperature predictions. The same molecular tools could elucidate
these changes also for commonly occurring mixed S. molnari/S. dykovae infections.

6.6. Discovery of a new type of cellular motility in eukaryotes in blood stages
of Sphaerospora molnari and its contribution to host immune cell evasion

Motility is one of the most common features of living organisms. Different
types of motility have been reported in the Myxozoa and while mechanisms differ
considerably, they are all based on adaptations of the same basic tool: the
actomyosin machinery (Hartigan et al. 2016b: Paper IV). The evolutionary older
malacosporeans develop vermiform stages inside bryozoan hosts that exhibit true
obliquely orientated tetraradial muscle blocks (Jimenéz-Guri 2007a). These cause
active, random, twisting movements or rhythmic sinusoidal or spiralling movements
within the bryozoan body cavity, aiming at release of the myxoworms from the host
body (Okamura et al. 2002; Canning et al. 2002; 2008; Jiménez-Guri et al. 2007b;
Gruhl & Okamura 2012; Patra et al. 2017: Paper V). All other myxozoans lost true
muscle cells during the evolution but adopted other types of cellular motility.
Amoeboid movement has commonly been described in myxozoans, during active
host invasion (EI-Matbouli et al. 1995a; Eszterbauer et al. 2009), in myxozoans living
in body liquids such as the bile, e.g. Ceratomyxa puntazzi Alama-Bermejo, Raga et
Holzer, 2011, that need to stay afloat (Alama-Bermejo et al. 2012) and, in kidney
tubules, e.g. pseudoplasmodia of Sphaerospora diminuta Li et Desser, 1985 (Li &
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Desser 1985; Lom et al. 1989b). Moreover, a sinusoid movement was observed in
the spore valve cells of Fabespora vermicola Overstreet, 1976 most probably to
release from host tissue (Weidner and Overstreet 1979). A different type of motility
is the nematode-like movement of the worm-shaped plasmodia of Ceratomyxa
vermiformis Adriano et Okamura, 2017 in the bile of Colossoma macropomum
(Cuvier, 1816) (Adriano & Okamura 2017) which likely promotes exit of the whole
plasmodium (rather than liberated spores) into the gut via the common bile duct.

While all these types of motilities find similarities in that of other unicellular
or multicellular organisms, the fast, continuous and non-directional twitching and
“dancing” motility of S. molnari blood stages in common carp blood is unique
amongst eukaryotes (Hartigan et al. 2016b: Paper 1V). The motility, promoted by a
rapid formation and reabsorption of membrane folds of the primary cell that propel
the parasites around their axis, was coined Membrane Fold Induced Tumbling (MFIT)
(Hartigan et al. 2016b: Paper IV). Interestingly, not only the relevant motor protein
(highly derived actin in S. molnari) but also the function of MFIT differs from other
organisms by being non-directional and evasive to host-cell attachment. This may
cause limited initial recognition of the parasite and subsequently limited activation
of other host defense mechanisms that are necessary for innate or adaptive immune
responses. For a better understanding of the interaction of S. molnari with the host’s
immune cells, further immune assays, such as with serum peroxidases,
degranulation assays, respiratory burst activity, measuring of reactive oxygen
species and nitric oxide production, as well as gene expression analysis of immune-
related genes in carp via RNA-seq should be performed. Apart from these innate
immune parameters, it would be interesting to study IgM and IgT expression in
infected carp to determine acquired specific immunity to S. molnari, providing some
protection to re-infection as observed in other myxozoans (Gorgolione et al. 2013;
Bailey et al. 2017; Alvarez-Pellitero 2008; Alvarez-Pellitero et al. 2008).
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