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1. Introduction 

 

1.1. Genomic imprinting and imprinted genes 

 

Genomic imprinting is an epigenetic process which affects a subset of genes in mammals 

and causes genes to be expressed in a monoallelic, parent-specific pattern. Monoallelic 

expression is controlled by epigenetic marks, predominantly DNA methylation, with 

differential occupancy on maternal and paternal allele. Primary differences in allelic DNA 

methylation are established in the germline (i.e. oocytes and sperm) as germline 

differentially methylation regions (gDMRs), and persist after fertilization during prenatal 

and postnatal development, leading to differential gene expression patterns from individual 

alleles. gDMRs which were functionally proven to regulate imprinting within the associated 

regions are referred to as imprinting control regions (ICRs) (Kelsey and Feil, 2013; Barlow 

& Bartolomei, 2014). 

To this date, about 150 imprinted genes have been identified in mouse and mapped to 17 

mouse chromosomes. It was shown that these genes tend to be clustered, specifically in 16 

regions that contain two or more imprinted genes (Barlow & Bartolomei, 2014). The 

grouping of imprinted genes within clusters allows them to share common regulatory 

elements, such as gDMRs/ICRs and non-coding RNAs. Transcriptional regulation of the 

gene cluster by the differential methylation at ICR can be complex (illustrated in figure 1) : 

the methylated copy may repress one transcript and consequently promote the expression of 

other nearby genes, while the unmethylated ICR on the other allele acts as a promoter for a 

lncRNA and represses the expression of other genes in the cluster (Hanna and Kelsey, 2014; 

Andergassen et al. 2017). This is in contrast with direct regulation, when the unmethylated 

ICR promotes expression of the associated transcript.  
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Figure 1. Examples of directly and indirectly regulated imprinted regions. Schematic representation of the (a) 

Peg3 imprinted gene on chromosome 7 and (b) the Igf2r imprinted cluster on chromosome 17. The illustration 

shows the expression status of genes on maternal and paternal alleles; horizontal arrows correspond to active 

promoters. (a) The differentially methylated ICR established during germ cell development is located at the 

promoter of the Peg3 gene and directly regulates the monoallelic transcription of this gene. (b) The maternally 

methylated ICR indirectly regulates the monoallelic expression of the adjoining genes at this locus, partially 

mediated by the monoallelic methylation acquired at the nearby secondary DMR at the Igf2r promoter. (Hanna 

and Kelsey, 2014;) 

 

 

 In addition to the effect on transcription, the other key characteristics of imprinting are the 

inheritance of imprints in somatic lineages through mitosis, initiation only in one of the two 

parental chromosomes, and the erasure in the early germ cells that must lose the inherited 

parental imprint in order for parental-specific identity to be established in the gametes 

(Ferguson-Smith, 2011).  

Genomic imprints are classically defined as DNA methylation-dependent, yet the role of 

histone modifications and their relationship with DNA methylation and gene expression at 

imprinted loci is being studied. Although active and repressive histone modifications are 

known regulators of transcription, until recently, their role in imprinting was considered to 

be downstream of DNA methylation status of ICRs. (Ferguson-Smith, 2011). However, 

recent research suggests that histone modifications may play a role in the regulation of 

genomic imprinting. Particularly, trimethylation of histone 3 lysine 27 (H3K27me3) appears 

to regulate imprinted gene expression in extra-embryonic tissues independently of DNA 
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methylation. This phenomenon is termed non-canonical imprinting (Hanna et al. 2019; Inoue 

et al. 2017).  

It has been hypothesized that genomic imprinting evolved to play a certain role in 

mammalian development and reproduction, as imprinted genes are involved in various 

aspects of prenatal and postnatal development. In addition, due to imprinted genes affecting 

fetal growth, parthenogenesis in mammals is not possible.  The evolution of imprinting is 

classically explained by the ‘parental conflict’ hypothesis. This hypothesis arises from the 

observations that embryonic growth is promoted by paternally expressed genes, while 

maternally imprinted genes repress fetal growth or minimize the effect of paternally 

expressed genes (Iwasa, 1998). Imprinted genes have also been identified in endosperm of 

some seed-baring plants, suggesting the importance of genomic imprinting in regulation of 

nutrient transfer; to this date, the reason behind this is still not known (Barlow & Bartolomei, 

2014). 

The importance of correct allele-specific expression of imprinted genes in mammalian 

development is exemplified by a number of human disorders that affect imprinted gene 

expression. In addition, the study of patients with such disorders, such as Beckwith-

Wiedemann syndrome, Prader-Willi syndrome and Angelman syndrome, associated with 

parent-of-origin effects in their inheritance manner served as one of the key tools for the 

identification and understanding of the organization of imprinted genes. Studies conducted 

on patients and mouse as a model organism have been crucial for obtaining information 

about clusters of human genes, mapping ICRs and discovering epigenetic mechanisms that 

regulate genomic imprinting (Ferguson-Smith, 2011). 

 

 

 

1.2. Establishment of genomic imprints in the germline 

 

To this date, it has been shown that twenty gDMRs in imprinted regions have acquired 

methylation on maternal allele during oogenesis and only three during spermatogenesis. This 

indicates the differences in mechanisms by which DNA methylation marks are established in 

male and female gametogenesis. Imprints inherited from parents are erased in the embryonic 

germline by the combination of passive and active demethylation processes. During passive 

DNA demethylation, DNA methylation marks are gradually diluted as a consequence of 



5 
 

repeated rounds of DNA replication without deposition of methylation marks on the newly 

synthesized DNA strand. Active DNA demethylation comprises the conversion of DNA 

methylation mark, 5-methylcytosine, to 5-hydroxymethylcytosine by the TET family of 

enzymes or deamination of 5-methylcytosine to thymine, where both 5-

hydroxymethylcytosine and thymine can be removed and replaced by cytosine by base 

excision repair (Li and Zhang, 2014). 

The re-establishment of DNA methylation (de novo DNA methylation) in unmethylated 

male and female germ cells occurs in different developmental stages and in different cellular 

contexts, and results in different DNA methylation patterns (Stewart et al. 2016). In the 

female gonad, DNA methylation is established after birth in meiotically arrested cells, while 

in the male gonad, de novo methylation occurs prior to meiosis in mitotically arrested 

prospermatogonia and the methylome has to be maintained during following mitotic 

proliferation and meiosis occurring between prospermatogonia and mature sperm. In sperm, 

almost all DNA is methylated with the exception of CpG-rich sequences (CpG is a DNA 

sequence where cytosine is followed by guanine) which are generally resistant do DNA 

methylation. In contrast, the methylome of oocytes is composed of large methylated and 

unmethylated domains, with methylated domains matching actively transcribed genes and 

unmethylated domains overlapping intergenic regions (Veselovska et al. 2015, Kobayashi et 

al. 2012).      

The differential methylation of gDMRs between oocytes and sperm appears to be a 

consequence of the different overall methylation landscapes of the gametes.   Maternally-

methylated gDMRs colocalise with CpG-rich regions called CpG islands overlapping a 

promoter for coding on non-coding genes, whereas paternally-methylated gDMRs are 

located intergenically (Hanna et al. 2018).Although the maternally-methylated gDMRs 

overlap annotated promoters,  transcription through these DMRs in the oocytes is a common 

feature of maternally-marked imprinted loci due to the activity of oocyte-specific upstream 

promoters (Chotalia et al. 2009, Veselovska et al. 2015). 
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1.3. Maintenance of genomic imprints after fertilization 

 

After fertilization, the epigenetic landscape of both gametic genomes is reprogrammed 

with only a fraction of sequences keeping their methylation status from the gametes 

through the pre-implantation and later developmental stages. The paternal genome is 

rapidly demethylated through an active demethylation processes, while the maternal 

genome gradually loses most of its DNA methylation marks through passive demethylation 

during pre-implantation development. Exceptions from these global demethylation events 

are mostly imprinted gDMRs, which require different factors to prevent DNA methylation 

erasure. One such factor is maternal protein DPPA3 (also called PGC7/STELLA), which is 

highly expressed during oogenesis and persists in the pre-implantation embryo, and has a 

general role in protecting DNA from active demethylation by TET enzymes in early mouse 

embryo (up to the 2-cell stage) (Barlow & Bartolomei, 2014).  Another factor that has more 

specific role in preserving gDMR methylation and is claimed to be an imprint specific 

factor is ZFP57 (Shi et al., 2019). Insights into the involvement of ZFP57 were obtained 

through gene targeting in mouse and from studies transient neonatal diabetes (TNDM). In 

patients with TNDM, loss of DNA methylation at multiple imprinted loci was detected, and 

it was associated with the mutation in the ZFP57 gene (Kelsey and Feil, 2013). In addition, 

results from the genetic experiments in mouse revealed that ZFP57 is essential for 

preventing the loss of DNA methylation at multiple imprinted loci. It has been shown that 

ZFP57 interacts with cofactor KAP1, which leads to the recruitment other repressive 

epigenetic regulators essential for maintenance of DNA methylation, for instance DNTMs, 

DNA binding factor UHRF/NP95 and H3K9 methyltransferase SETDB1 (Barlow & 

Bartolomei, 2014). One of the ZFP57-interacting proteins is the maintenance DNA 

methyltransferase DNMT1 that is consequently exclusively present at the imprinted loci 

and protects them from global passive DNA demethylation during pre-implantation 

development.  

After fertilization, beside the loss of DNA methylation, histone modifications transmitted 

from the gametes are also reprogrammed in the pre-implantation embryo. Particularly, 

repressive H3K27me3 associated with non-canonical imprinting is lost during pre-

implantation development and later re-established in the post-implantation embryo (Inoue, 

2017; Hanna et al. 2019).  The exact mechanism of this erasure and re-establishment of 

maternally-inherited H3K27me3 remain unclear (Hanna et al. 2019). 
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1.4. Imprinted gene clusters in mammals 

 

As of now, 23 imprinted gDMRs and 96 imprinted genes have been identified, with an 

additional 13 putative imprinted genes in mouse placenta (Hanna et al. 2019). In the recent 

study conducted by Andergassen et al. (2017), it has been found that 19 out of 23 high 

confidence novel imprinted genes were in the vicinity of known imprinted genes, further 

indicating that the imprinted genes are regulated in clusters.   

Imprinted regions have different sizes (up to 500 Mb or 500 kb) (Kaneko-Ishino and Ishino, 

2019), containing both imprinted and non-imprinted genes, and both coding and non-coding 

transcripts. In addition, it appears that the size of the cluster regulated by the same ICR can 

differ between tissues - in placenta, ICRs regulate the imprinted expression of more distant 

genes than in classical somatic tissues.  Therefore, it is not straightforward to estimate the 

borders of the clusters and to determine which genes are still controlled by the ICRs. 

Gene expression is remodeled during development – it differs between oocyte, early 

embryos, late embryos, individual somatic tissues and placenta, involving genes in imprinted 

clusters as well. This is illustrated by the identification of novel oocyte-specific transcripts 

transcribed through the gDMRs in mouse oocytes that are not present in any embryonic 

stages or somatic tissues (Veselovska et al. 2015, Gahurova et al. 2017), regulating DNA 

methylation establishment at these loci. In addition, non-coding RNAs, such as Kcnq1ot1, 

are known important regulators in some imprinted loci (Mancini-Dinardo, 2006). Due to the 

tissue-specificity of non-coding RNAs, it cannot be excluded that some regulatory non-

coding RNAs in imprinted regions were not identified yet.   

Studies also show the difference in one locus during embryo development. For instance, it 

has been shown that there is lineage-specific regulation of Igf2r/Airn imprinted expression 

during gastrulation. In early embryonic development spreading of DNA methylation at Igf2r 

DMR2 during gastrulation was noted and at E6.5, both epiblast (Epi) and visceral endoderm 

(VE) lineages retain maternal ICR methylation. On the contrary, the epiblast expresses 

biallelic Igf2r and no Airn. However, both genes are imprinted in visceral endoderm of the 

same embryos indicating that there is a certain pathway distinctions that result in imprinted 

expression in VE but not in Epi at E6.5 – such as lineage-specific expression of chromatin 

binding/modifying genes established during preimplantation inner cell mass/trophectoderm 

differentiation. (Marcho et al. 2015). 
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Furthermore, many genes appear to be specifically imprinted in placenta in both human and 

mouse, suggesting that there are differences in transcriptional regulation between placenta 

and somatic tissues. Recent analyses revealed that some of the placenta-specific DMRs were 

associated with expression of imprinted genes such as TIGAR, SLC4A7, PROSER2-AS1, and 

KLHDC10 (Hamada et al. 2016; Hanna et al. 2016). Recent studies identified novel 

imprinted transcripts in the vicinity of known imprinted genes predominantly specific for the 

placenta lineage (Andergassen et al. 2017; Hanna et al. 2019). One of such transcripts, 

within the Slc38a4 locus, was shown to regulate the imprinted expression of Slc38a4 (Hanna 

et al. 2019; Bogutz et al., under review).    

Transposable elements (TEs) often act as promoters of oocyte-, embryo-, or placenta-

specific transcripts (Veselovska et al. 2015; Franke et al. 2017; Macfarlan et al. 2012; Emera 

and Wagner, 2012). This also includes imprinted regions, where some TE-associated 

transcripts play important regulatory roles, such as providing transcription through gDMRs 

in the oocytes leading to their DNA methylation (Veselovska et al. 2015), or regulating the 

imprinting of the region in placenta lineage through yet unknown mechanisms (Hanna et al. 

2019; Bogutz et al., under review). In non-imprinted genes, it was demonstrated that TEs can 

act as promoters for transcripts which act as enhancers and stimulate the transcription of 

nearby transcripts (Pi et al. 2010; Pi et al. 2017; Raviram et al. 2018). Therefore, it is 

possible that imprinted TE-associated transcripts regulate the imprinted expression of nearby 

genes in a similar manner, although it still remains to be elucidated what mechanism 

regulates the imprinted expression of TE-associated transcripts. 

As of today, no study has globally described the transcriptional remodeling of gene 

expression in imprinted clusters during development. Considering that the transcriptomes of 

oocytes and embryos are not so well annotated as of somatic cells, due to the low amount of 

input material, it is possible that imprinted regions comprise some oocyte- or embryo-

specific unannotated genes with potentially important roles. In this project, we therefore 

aimed to annotate all transcripts in imprinted regions in mouse, characterize their expression 

remodeling and shed more light on their transcriptional regulation.  
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2. Aims of the work 

 

 

ü Processing and mapping of publicly available RNA-seq datasets from various 

developmental stages and somatic tissues in mouse 

ü Annotation of transcripts within clusters of imprinted genes 

ü Analysis of expression changes of transcripts within imprinted gene clusters during 

development, and between embryonic and extraembryonic lineages 

ü Identification of enriched sequence motifs and potential transcription factors binding 

sites at promoters of transcripts within imprinted gene clusters 

ü Identification of transposable elements acting as promoters of transcripts within 

imprinted gene clusters  

ü Identification of potential candidates for further functional studies 
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3. Methods 

 

The overall workflow of this project is visualized on fig. 2.  

 

 
 
             Fig. 2. Transcriptome analysis workflow 
 

 

 

3.1. Datasets 

 

RNA-seq datasets were searched for in NCBI Gene Expression Omnibus database and 

downloaded as fastq files from the European Nucleotide Archive (ENA, 

https://www.ebi.ac.uk). Datasets with following accession codes were used in this project: 

GSE70116, GSE71434, GSE98150, GSE76505, GSE75957, GSE124216. Detailed list of 

datasets used in this project can be found in Supplementary Table 1.  
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3.2. Trimming 

 

To remove low-quality bases and adapters from the raw reads, program Trim Galore 

(www.bioinformatics.babraham.ac.uk/projects/trim_galore/) v0.4.1 was used with default 

parameters, specifying whether the reads were sequenced in single end or paired end mode. 

For single end reads, the command “trim_galore *fastq.gz” was used, for paired end reads, it 

was the command “trim_galore --paired *fastq.gz”.  

 

 

3.3. Quality control of trimmed reads 

 

The quality of the trimmed reads (sequence quality and content, GC content, sequence length 

distribution, sequence duplication levels and overrepresented sequences) was checked using 

program FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) v0.11.5 with 

default parameters, to check whether all the datasets are of sufficient quality for downstream 

analyses. The commands were “fastqc *_trimmed.fq.gz” and “fastqc *.fq.gz” for single end 

mode and for paired end mode, respectively. 

 

 

3.4. Mapping  

 
We mapped the trimmed reads to the previously indexed mouse GRCm38  genome 

(specified by -x parameter) using Hisat2 (Kim, et al. 2015; Pertea et al. 2016) v2.0.5 with 

parameters specifying the maximum and minimum values for soft-clipping per base (--sp) 

and modifying the output to be compatible with de novo transcriptome assembly using 

Cufflinks (--dta-cufflinks). The output file from Hisat2 with mapped reads (Sequence 

Alignment Map (sam) file), was further converted to Binary Alignment Map (bam) file using 

SAMtools view function of SAMtools v1.3.1 (H. Li, 2011; H. Li et al., 2009). 
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3.5.  De novo transcriptome assembly and filtering 

 

Prior to the de novo transcriptome assembly, the datasets that were split into two bam files 

(due to the sequencing in two different runs) were merged using SAMtools 

(http://samtools.sourceforge.net) v1.3.1 function merge (using the command samtools merge 

*merged.bam *rep1.bam *rep2.bam). All datasets were then sorted using SAMtools v1.3.1 

function sort.  Transcriptome assembly was done on sorted datasets using Cufflinks 

(http://cufflinks.cbcb.umd.edu/) v2.1.1.  If multiple replicates were available for the same 

sample type, two or three replicates were selected for de novo transcriptome assembly based 

on read count, strand specificity and quality of the data (based on FastQC). After the 

assembly of the transcriptomes from the individual datasets, the annotations were merged 

into one final annotation using Cuffmerge function within Cufflinks v2.1.1 (- o option). This 

final annotation was further filtered using a Python v3.7 script previously developed in the 

laboratory (Supplementary file 1) to remove, based on genomic coordinates, transcripts not 

located within the imprinted regions. Furthermore, in program Seqmonk v1.44.0  

(https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/), we compared the 

coordinates and strand specificity of known TEs with the annotated transcripts and we 

removed from the annotation all the transcripts overlapped by a same strand TE by more 

than 50%.  This filtered annotation file (Supplementary file 2) was used in all downstream 

analyses. 

 

 

3.6. Quantification expression of transcripts within imprinted clusters  

 

To quantify the expression of transcripts we used Cufflinks v2.1.1 (command cufflinks -G 

mouse_merged_filtered.gtf -o output_folder sorted_mapped_reads.bam). The unit of 

expression is reads per kilobase of the transcript per million reads in the library (RPKM) for 

single read datasets and fragments per kilobase of the transcript per million reads in the 

library (FPKM) for paired end datasets.  
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3.7. Expression analysis, heat map and hierarchical clustering  

 
First, we removed the transcripts with expression level under 0.1 in all datasets and mean-

centered the values to be compatible with heatmap generation and clustering. This included 

logarithm transformation of values, the quantification of averages of these log2 values for 

each transcript from all the developmental stages and tissues and subtracting the average 

from each log2 value. These modifications were done in order to change the raw expression 

values into values reflecting the magnitude of expression changes between the datasets.  

From the list of transcripts and final mean-centered values we generated a .txt file for the 

hierarchical clustering and heatmap generation. Using RStudio (v.1.1.463) we did 

hierarchical clustering using function hclust and to visualize the expression profiles, we used 

heatmap. Using cutree command, we divided the transcripts into 20 main clusters (based on 

similarities of their expression profiles) and generated an output .txt file listing the number 

of the cluster for each transcript. List of all the functions used in RStudio is in 

Supplementary file 3. From the output file we quantified how many transcripts belong to 

each cluster and quantified average and median values for each of 11 clusters with more than 

100 transcripts in all datasets using Microsoft Excel v16.29.1.  

 

 

3.8. Sequence motif analysis 

 
First, we obtained genomic coordinates (chromosome number, start and end base) of the 

promoters or wider regulatory regions of interest using program Seqmonk v1.44.0 (option 

Make probes, Upstream of feature, values 2000 bp upstream from the transcriptional start 

site, TSS, (+2000) and 500 bp downstream from TSS (-500), or +5000 and -5000 from TSS). 

When the probes were generated, we used option Fixed value quantitation (default settings) 

and saved the results as .txt file. From this file we selected only those transcripts which were 

used for the cluster analysis (with RPKM/FPKM value above 0.1 in at least one dataset), 

using Excel MATCH function. To obtain the sequences of the regions defined by 

coordinates, we used a Python script (v3.7) previously developed in the laboratory 

(Supplementary file 4) with mouse GRCm38 genome sequence. To find the enriched 

sequence motifs from the obtained sequences, we used program called DREME (Bailey, 

2011) from MEME suite (Bailey et al. 2009, http://meme-suite.org/tools/dreme) using 
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default settings. The analysis was performed for all regions, but also individually for each 

expression cluster with more than 100 transcripts. For each sequence (.txt file), we retained 

top 10 motifs (information about the letter code sequence, graphical logo, E-value, the 

numbers of positives and negatives). These motifs were then analyzed using Tomtom v5.0.5 

(Gupta et al. 2007) program with default parameters to identify whether they match known 

binding sequence of a transcription factor, extracting the top 5 factors for each motif. 

 

 

3.9. Transposable elements analysis 

 
The analysis whether promoters of transcripts within imprinted regions are associated with 

TEs was done using Seqmonk (v1.44.0) and Microsoft Excel (v16.29.1). First, filtered .gtf 

annotation file was uploaded to Seqmonk together with files with the annotations of 

individual TE classes elements which were imported as reads. Import options were Column 

Delimiter Tab, Start at row 0, Chr Col 6, Start Col 7, End Col 8, Strand Col 10, the other 

options were left as default. Afterwards, we defined probes as +/-50 bp around TSS (Make 

Probes option, Upstream of feature was set to +50 and -50, the rest was left as default). 

When the probes were made, we quantified read counts within the probes (counting reads on 

the same strand as probe without any further modifications of the read counts). This allowed 

us to quantify whether TEs from each of TE classes overlap transcript promoter on the same 

DNA strand. The output report with read counts was saved as .txt file and imported in Excel 

(v16.29.1). Using MATCH function in Excel, we preserved the information only about 

promoters of transcripts which were used for the hierarchical clustering analysis.  This was 

followed by the quantification of how many transcripts have value higher than 0 (Excel 

function COUNTIF) and therefore their promoters are associated with TE, for individual TE 

classes. This was analyzed for all transcripts, but also for individual expression clusters 

(using the Excel LOOKUP function and the information about clusters which was previously 

obtained).  
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3.10. Identification of potential candidates 

 
For the identification of potentially interesting biological candidate transcripts, we used the 

quantification table (Supplementary table 2) to select transcripts which are relatively highly 

expressed in the oocytes and/or early embryos (above 0.5), and ideally with weak or no 

expression in somatic tissues. Transcripts should also be multiexonic and match the already 

annotated genes in the Ensembl annotation; to check that we used Seqmonk (v1.44.0). In 

addition to this, we also selected novel transcripts which do not match the already annotated 

genes in the Ensembl annotation. Lastly, we checked if there are multiple overlapping 

transcripts sharing the same exons, and if yes, whether the overlapping transcripts, or at least 

some of them, have similar expression profile as our selected transcript. The Seqmonk 

screenshots showing the expression of transcripts of interest were generated using Wiggle 

plot quantitation quantitating normalized read counts in 50 bp windows in Seqmonk 

(v1.44.0). 

4. Results 

 

4.1. Identification and processing of datasets 

 
 In order to generate a complete annotation of all transcripts within clusters of imprinted 

genes, including those that are novel and were not previously annotated, and to analyze 

expression changes of these transcripts across mouse development, we selected  41 publicly 

available RNA-seq datasets from oocytes, a range of embryonic stages, and neonatal and 

adult tissues (listed in Table 1) (Veselovska et al. 2015; Gahurova et al. 2017; Zhang et al. 

2016; Wang et al. 2018; Zhang et al. 2018; Andergassen et al. 2017; Hanna et al. 2019). This 

comprises datasets from growing (postnatal day 5, 10 and 15 (d5, d10 and d15, 

respectively)) and fully grown (called germinal vesicle, GV) oocytes, all stages of early pre-

implantation embryos, and individual embryonic cell lineages from the early blastocyst stage 

at embryonic day 3.5 (E3.5), late embryonic somatic tissues, neonatal brain and a number of 

adult somatic tissues from the major body organs. Embryonic cell lineages comprise the 

early segregating inner cell mass (ICM) and trophoectoderm (TE) and subsequent cell 

lineages of embryonic lineage (segregating from ICM), which gives rise to the embryo itself 

(epiblast - Epi, ectoderm - Ect, mesoderm - Mes, endoderm - End and primitive streak - PS), 
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of lineage towards placenta (developing from TE, extraembryonic ectoderm - ExE), and an 

extraembryonic lineage segregating from ICM (visceral endoderm – VE) (Figure 3). 

 

 

 

 
 

 

 

 
Figure 3. Embryonic cell lineages 
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After downloading the datasets, the adapters and bad quality bases were trimmed, and 

datasets were then quality checked and mapped to the GRCm38 mouse genome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

 

 
 

 

 

Table 1. List of used datasets 

 

 

4.2. Generating an annotation of transcripts within imprinted regions 

 

After mapping the data, we performed de novo transcriptome assembly using Cufflinks 

(http://cufflinks.cbcb.umd.edu/) on the individual datasets. Then, the assembled annotations 

were merged using Cuffmerge within Cufflinks into one complete transcriptome annotation 

OOCYTE 

DATASETS 

PRE-

IMPLANTATION 

EMBRYONIC 

DATASETS 

POST-

IMPLANTATION 

EMBRYONIC 

DATASETS 

SOMATIC TISSUES 

DATASETS 

d5 oocytes zygote Ectoderm D3 brain 

d10 oocytes late 2C embryo Mesoderm Adult brain 

d15 oocytes 4C embryo Endoderm Adult liver 
GV oocytes 8C embryo E6.5 - Epi Adult heart 
 morula E6.5 - ExE Adult lung 

 E3.5 - ICM E6.5 - VE Adult spleen 

 E3.5 - TE E7.5 - Epi Adult thymus 

 E4.0 - ICM E7.5 -_ExE Adult leg muscle 

 E5.5 - Epi E12.5 - placenta Adult virgin mammary gland 

 
E5.5 – VE 

ESC 
E12.5_- liver 

Lactating mammary gland 

Lactating brain 

  
E12.5 - VE 

E16.5 - brain 

E16.5 -_heart 

 

  E16.5 - liver  

  E16.5 -_placenta  

  Primitive streak  

    



18 
 

containing transcripts from all analyzed developmental stages. This final transcriptome 

annotation consists of 266340 transcripts.  

From the final annotation, we were interested only in the imprinted regions. Based on the 

GeneImprint database (http://www.geneimprint.com) and recent publications (Andergassen et 

al. 2017; Inoue et al. 2017; Xu et al. 2011) we made a comprehensive list of all imprinted 

genes in mouse, containing 151 imprinted genes organized in 52 regions (some of these 

regions consist of only one imprinted gene). The genomic coordinates of imprinted clusters 

were defined by the first protein-coding gene with known function on either side that is 

either shown to be expressed bi-allelically, or with unknown imprinting status 

(Supplementary table 3). Using these coordinates of the borders of imprinted clusters, we 

filtered the assembled annotation to preserve only the transcripts inside these 52 imprinted 

regions, everything else was removed. The annotation file after filtering consists of 12307 

transcripts.  

 

 

4.3. Hierarchical clustering and expression analysis 

 
To analyze the expression profiles of transcripts within the imprinted regions, the expression 

levels of transcripts were quantified using Cufflinks and the expression levels were averaged 

across replicates of the same dataset and across datasets from the same developmental stage 

from different sources. We removed transcripts overlapped by same strand transposable 

elements by more than 50%. We removed such transcripts because they are likely not to be 

real independent transcripts, just expressed transposable elements. This is in contrast with 

independent transcripts that use transposable elements as their promoters - but in these cases, 

the overlap with same strand transposable element is smaller than 50%, and they are often, 

but not always, spliced.  In addition, we also removed all the transcripts with very low 

expression level (RPKM or FPKM under 0.1) in all datasets, as the expression changes, and 

expression itself, in such transcripts might be just due to the random transcriptional noise.   

Then, we performed hierarchical clustering analysis which clusters transcripts with similar 

profile of expression changes across datasets and visualized the expression profiles using 

heatmap (Figure 4). In the heatmap, each row represents one transcript, columns represent 

datasets, high expression is visualized in yellow and low expression in blue. 
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After visual inspection of the heatmap, we decided to categorize the transcripts into twenty 

expression clusters. The heatmap also shows that the expression of transcripts in E7.5 Epi 

and Exe is predominantly higher than in other datasets, while the expression in End, Ect, 

Mes, and PS is relatively low. This might be related to the quality of the datasets and it 

probably does not represent the real biological situation. Therefore, we did not consider the 

expression patterns in these datasets as strongly as in the other datasets. We quantified how 

many transcripts belong to each cluster and quantified their average and median expression 

values. There are eleven clusters with more than 100 transcripts (Table 2), and we focused 

on them for further expression analysis.  

The line graphs visualizing the average expression levels across datasets (figure 5a and 5b) 

show that transcripts are predominantly specific for a certain developmental stage. Cluster 3 

represents oocyte-specific transcripts, which are degraded by 4C stage embryos (and never 

become highly expressed again), while in cluster 2 the expression peaks in the oocyte and in 

placenta, and in cluster 8 the transcripts are expressed in the oocytes and early embryo. In 

clusters 1 and 4, transcript expression is the highest in preimplantation embryos (in cluster 4, 

the expression also appears to peak in liver datasets). Clusters 6, 7 and 10 represent 

transcripts that are highly expressed in all postnatal somatic tissues and in late embryonic 

datasets with decreased expression in VE in all clusters and placenta in cluster 7. In cluster 

5, there are transcripts expressed predominantly in placenta and other late embryonic 

datasets (from E9.5), but not at earlier embryonic stages or in postnatal tissues, whereas 

cluster 16 appears to represent brain-specific transcripts and cluster 9 contains transcripts 

with the highest expression in late embryonic tissues except brain and heart.  
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Figure 4. Heat map visualization of expression profiles. Each row represents one transcript and columns 

represent datasets; relative expression is visualized in shades of yellow (high expression) and blue (low 

expression) 
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Table 2. Number of transcripts within each of the clusters that have 100 or more transcripts 

 

Cluster 

Number of 

transcripts 

cluster_1 180 

cluster_2 130 

cluster_3 447 

cluster_4 101 

cluster_5 101 

cluster_6 627 

cluster_7 406 

cluster_8 123 

cluster_9 217 

cluster_10 147 

cluster_16 508 
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Figure 5a. Line graphs with average expression values (log2 transformed RPKM or FPKM) 
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Figure 5b. Line graphs with average expression values (log2 transformed RPKM or FPKM) 
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4.4. Sequence motif analysis 

 

In the analysis, we aimed to identify enriched sequence motifs that would indicate potential 

binding of transcription factors regulating expression of these transcripts. We looked for 

motifs in promoter sequences (-2000/+500 bp around the TSS), which are the primary 

binding sites of regulatory transcription factors, but also in broader regulatory regions (+-

5000bp around the TSS), as transcription factors can also bind to a closely positioned 

enhancer regions.   

To be able to see if there are different transcription factors regulating different clusters, we 

extracted the sequences of regions of interest of transcripts from the individual clusters 

(clusters 1-10 and 16) using a Python script previously written in the laboratory.  

To find the enriched sequence motifs, we submitted the extracted sequences in the program 

DREME followed by another tool TOMTOM which associated the sequence motifs with 

known transcription factor binding sites. The results are summarized in the Supplementary 

table 4. Despite the lineage specificity of expression profiles of transcripts in the individual 

clusters, the results showed predominantly non-specific transcription factors. We observed 

that binding sequences of some transcription factors were identified in many of the clusters, 

such as ZSCAN4, FOXC1/FOXC2, POU-family factors, ELF3 and TCF3 factors as well as 

various ZFP factors. In the GeneCards database (https://www.genecards.org), these 

transcription factors are associated with the regulation of embryonic development, but also 

other developmental processes. The regulatory sequences of transcripts in the clusters with 

oocyte-, preimplantation embryo-, placenta- or brain-specific transcripts did not show 

enrichment for respective specific TFs, with the few exceptions. For example, in the cluster 

16 containing transcripts enriched in brain datasets, we identified the enrichment for binding 

sites for TFAP2E (also called TCFAP2E), a transcription factor important for the 

development of central nervous system in humans (https://www.genecards.org/cgi-

bin/carddisp.pl?gene=TFAP2E). However, the binding sites for this transcription factor were 

enriched also in the majority of other clusters (namely clusters 1-5, 7, 9 and 10).  On the 

contrary, binding sites for HIC1 were identified only in clusters 1 and 4 containing 

transcripts with highest expression in the preimplantation development. Nevertheless, this 

transcription factor has no known association with the regulation of preimplantation 

development (https://www.genecards.org/cgi-bin/carddisp.pl?gene=HIC1). In addition, in 
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the cluster 8 with transcripts highly expressed in the oocytes, the motif for PBX3 was 

identified (except the promoter region of transcripts in cluster 8, the motif for this factor was 

identified only in the broader regulatory regions of cluster 10). PBX3 is highly expressed in 

the ovaries (https://www.genecards.org/cgi-bin/carddisp.pl?gene=PBX3) suggesting it can 

act as an ovary or oocyte transcription factor.   

 

 

4.5. Transposable element analysis 

 
The goal was to find out what proportion of transcripts is using transposable elements as 

their promoters, and if this differs between expression clusters. We were interested 

particularly in ERVK elements, as recent research is showing that ERVK-starting transcripts 

can be involved in so-called non-canonical imprinting (Hanna et al. 2019).  

The results showed that out of all 2816 transcripts, 497 use TE as their promoter, and it was 

found that the most common classes of TEs seem to be MaLR, ERVK and LINE-L1 (Table 

5, Figure 6). The highest proportions of TEs acting as promoters were in oocyte-specific and 

oocyte-enriched clusters 3 (34.6% of all promoters) and 8 (29.0%), while the clusters 5, 6 

and 9 with transcripts with the highest expression in late embryonic and/or postnatal tissues 

have the lowest proportions of transcripts using TEs as promoters (8.3%, 8.6% and 8.4%, 

respectively) (Figure 7, Table 7).  

Based on the association of ERVK elements with non-canonical imprinting in placenta, we 

hypothesized that transcripts with promoters associated with these elements may be 

relatively common in cluster 5 and potentially also clusters 6 and 9, which all contain 

transcripts with high expression in placenta. However, this was not the case as only 1 and 3 

transcripts initiate from ERVK promoter in clusters 5 and 6, respectively. In cluster 9, only 8 

transcripts use ERVK as their promoter, but it represents 53% of all TE-initiated transcripts. 

The highest number of ERVK-initiated transcripts is in oocyte-specific cluster 3, where it 

represents 33% of TE-initiated transcripts.  
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     Table 5. Numbers of transcripts with TE promoter 

 

 

 

 

 

 

 

 

 

 all 
cluster 
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cluster 
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cluster 

3 

cluster 

4 

cluster 

5 

cluster 

6 

cluster 

7 

cluster 

8 

cluster 

9 

cluster 

10 

cluster 

16 

LINE-

L1 
90 2 1 11 1 2 7 27 3 4 3 29 

LINE-

L2 
9 0 0 1 0 0 4 3 0 0 1 0 

LTR-

ERV1 
15 3 1 3 1 0 1 0 0 2 1 3 

LTR-

ERVK 
107 10 2 42 1 1 3 2 7 8 1 6 

LTR-

ERVL 
31 4 3 3 3 0 5 1 3 0 2 2 

LTR-

MaLR 
152 7 11 66 4 1 14 10 14 0 4 6 

SINE-

B2 
20 4 0 1 0 1 4 3 0 0 2 4 

SINE-

B4 
21 1 2 1 1 1 5 1 2 1 0 5 
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Figure 6. Numbers of transcripts with TE promoter 

 

 

 
Figure 7. Proportions of transcripts using TE as their promoter 
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Table 7.  Proportions (%) of transcripts using TE as their promoter 

 
 

 

 

 

4.6.   Identification of potential candidates 
     

In order to identify potential novel regulators of oocyte and/or embryonic development, we 

selected ten candidate transcripts that match the already annotated genes in the Ensembl 

annotation (Table 8) and ten novel candidates not overlapping annotated genes (Table 9). 

These transcripts can be further functionally tested in the laboratory by their downregulation 

and assessment of the phenotype in the oocytes or embryos.  

The expression levels of candidate transcripts in the oocyte, preimplantation embryos up to 

early blastocyst stage and in somatic tissues are visualized in bargraphs (Figure 8 and Figure 

9). We were particularly interested in the novel, previously not annotated transcripts. Based 

on expression profiles, novel candidates 1-6 are oocyte-specific, candidate 7 and 9 both 

belong to cluster number 1 which has transcript mostly expressed in preimplantation 

embryo, while candidates 8 and 10 are expressed in oocytes and early embryo (both belong 

to cluster 8). We visualized the expression of these transcripts in Seqmonk using wiggle plot 

All 15.80256 

cluster 1 20.39474 

cluster 2 21.2766 

cluster 3 34.59459 

cluster 4 13.92405 

cluster 5 8.333333 

cluster 6 8.548708 

cluster 7 12.43386 

cluster 8 29 

cluster 9 8.379888 

cluster 10 12.96296 

cluster 16 12.08791 
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quantification pipeline generating normalized read counts per 50bp windows, five examples 

(candidate transcripts 1, 2, 4, 7 and 8) are shown in figures 10-14, respectively.  

  

 

 

 

 Transcript Gene Chromosome Start End 

1. TCONS_00090578 Galnt6 15 100690969 100729376 

2. TCONS_00100104 Arid1b 17 4993946 5348092 

3. TCONS_00100517 Tcp1 17 12916475 12922732 

4. TCONS_00105982 Map3k4 17 12227597 12316489 

5. TCONS_00106052 Wtap 17 12964461 12992622 

6. TCONS_00106119 Tcte2 17 13716427 13761386 

7. TCONS_00133034 H13 2 152669534 152704128 

8. TCONS_00192115 Mest 6 30738012 30752774 

9. TCONS_00224250 Osbpl5 7 143688023 143740341 

10. TCONS_00224262 Nadsyn1 7 143795489 143822841 

 
 

Table 8. Candidate transcripts that are isoforms of known annotated genes and their genomic localization 
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 Novel transcripts Chromosome Start End 

1. TCONS_00100057 17 3808903 4001766 

2. TCONS_00039018 11 22534962 22596030 

3. TCONS_00051879 12 109757023 109846872 

4. TCONS_00100409 17 9283117 9320122 

5. TCONS_00105849 17 7711656 7722073 

6. TCONS_00082993 15 72444718 72480405 

7. TCONS_00090036 15 97187271 97203784 

8. TCONS_00021986 10 96735954 96792734 

9. TCONS_00143954 2 168818237 168823232 

10. TCONS_00143956 2 168854718 168856989 

 
Table 9. Candidate novel transcripts and their genomic localization  

 

     
 
Figure 8. Expression levels of candidate transcripts that are isoforms of known genes 
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Figure 9. Expression levels of novel candidate transcripts 

 
 
 

 
 
 
Figure 10. Visualized novel candidate transcript number 1 and its expression levels (its exons in de novo 

assembled transcriptome, marked as assembly, are highlighted in yellow and by red arrows, other exons 

belongs to other transcripts; rows marked as gene, mRNA and CDS show official annotation; expression levels 

are quantified as normalized read counts per 50 bp windows).  
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Figure 11.  Visualized novel candidate transcript number 2 and its expression levels (its exons in de novo 
assembled transcriptome, marked as assembly, are highlighted in yellow and by red arrows, other exons 
belongs to other transcripts; rows marked as gene, mRNA and CDS show official annotation; expression levels 
are quantified as normalized read counts per 50 bp windows). 
 
 
 
 
 
 

 
 
Figure 12. Visualized novel candidate transcript number 4 and its expression levels (its exons in de novo 
assembled transcriptome, marked as assembly, are highlighted in yellow and by red arrows, other exons 
belongs to other transcripts; rows marked as gene, mRNA and CDS show official annotation; expression levels 
are quantified as normalized read counts per 50 bp windows). 
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Figure 13. Visualized novel candidate transcript number 7 and its expression levels (its exons in de novo 
assembled transcriptome, marked as assembly, are highlighted in yellow and by red arrows, other exons 
belongs to other transcripts; rows marked as gene, mRNA and CDS show official annotation; expression levels 
are quantified as normalized read counts per 50 bp windows). 
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Figure 14.  Visualized novel candidate transcript number 8 and its expression levels (its exons in de novo 
assembled transcriptome, marked as assembly, are highlighted in yellow and by red arrows, other exons 
belongs to other transcripts; rows marked as gene, mRNA and CDS show official annotation; expression levels 
are quantified as normalized read counts per 50 bp windows). 
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5. Discussion 
 
In this thesis, we downloaded, processed and mapped 41 publicly available RNA-seq 

datasets from mouse oocytes, embryos and somatic tissues. Using these data, we assembled 

the complete transcriptome of imprinted regions across mouse development. We found out 

that transcripts within imprinted regions are often specific for certain developmental stage 

(or stages) and a substantial number of them appears to be specific for oocytes or embryonic 

development. We further noticed that there do not appear to be specific transcription factors 

regulating the expression of transcripts with similar expression profiles, but that a substantial 

proportion of transcripts, particularly those that are oocyte-specific, employs TEs as their 

promoters. We selected 20 transcripts expressed specifically in the oocytes or early 

preimplantation embryos for further functional analysis in the laboratory.  

To date, this is the first assembly of the complete transcriptome of mouse imprinted regions, 

annotating a substantial number of novel, previously not annotated transcripts. The fact that 

these transcripts were not previously annotated might be due to their tissue- or lineage-

specificity. This agrees with other studies performing de novo transcriptome assembly from 

low input samples – for example, previous de novo assembly of whole oocyte transcriptome 

also identified a high number of novel transcripts (Veselovska et al. 2015, Gahurova et al. 

2017). The novel transcripts are likely to be long non-coding RNAs, as these are often 

tissue- or cell type-specific (Zhu et al. 2016). From adult somatic tissues, the only tissue that 

differed from the others was brain, with a considerable number of brain-specific transcripts 

(this agrees with Andergassen et al. (2017) that brain has specific imprinting differing from 

other main body organs). Some transcripts are highly expressed in placenta, agreeing with 

the fact the placenta has high number of placenta-specific imprinted genes (Hanna et al. 

2016, Inoue et al. 2017, Andergassen et al. 2017). 

To this date there is no optimal strategy for generating RNA-seq libraries, and approaches 

also depend on the amount of starting material which is generally scarce for oocyte and 

embryos, but abundant for somatic tissues. Therefore, the quality of individual datasets used 

in this thesis differed and it is probably reflected in the quality of transcriptome assembly of 

respective datasets. For example, transcriptome assembly from the oocytes (Veselovska et 

al. 2015 datasets) and late embryonic and postnatal tissues (Andergassen et al. 2017 datasets) 

is probably more precise (better reflecting the reality) than from early embryos, as 

Veselovska et al. (2015)  and Andergassen et al. (2017) datasets are deeply sequenced and 

are strand specific, while early embryonic datasets mostly lack the strand information. 
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Without the strand specificity of the reads, the direction of the de novo assembled transcript 

(if it is encoded on plus or minus DNA strand) cannot be correctly estimated.  

The number of annotated transcripts is probably higher than the real number of transcripts, 

as some monoexonic genes are likely to be part of nearby multi- or mono-exonic genes, just 

that read density was not high enough to connect them (as in Veselovska et al., 2015). Also, 

some genes are likely to have fewer isoforms than annotated, as some isoforms can be just 

artefacts of the assembly.   

Moreover, the imprinted regions defined in this thesis might not be accurate, knowing that 

imprinted regions controlled by the same imprinted gDMR have different sizes based on the 

tissue/cell type (Andergassen et al. 2017). In order to circumvent this, we tried to include the 

broadest regions; also, as borders, we just took first gene that is either known to be not 

imprinted, or with unknown imprinted status. Therefore, there is small likelihood that these 

genes might be imprinted in some less studied tissues. 

The main limitation of the expression profiling analysis was that the datasets were generated 

by different sources, therefore, they can vary a lot due to the technical reasons (mostly the 

due to the differences in approaches and kits used for RNA extraction, cDNA synthesis and 

library preparation, and the number and length of reads, causing different sequencing depth). 

In the heatmap, we can see that some datasets were generally showing lower expression 

levels for all genes (Ect, End and Mes), and some generally high (E7.5 Epi, E7.5 Exe) - that 

is probably due to the mentioned technical differences in library preparation and sequencing 

depth. 

Sequence motif analysis did not identify anything of particular interest - even for genes 

expressed predominantly in the oocytes, placenta or brain, we generally did not find oocyte-, 

placenta- or brain-specific transcription factor binding sites. This might be either due to the 

real lack of specific regulator, or due to their binding further than 5kb from the annotated 

TSS, or due to the imprecise annotation of TSSs and promoters.  

TE analysis revealed that TEs are used as promoters mostly in transcripts highly expressed 

in the oocytes. Interestingly, their proportion is similar to the proportion of TE-associated 

transcripts as identified in overall oocyte transcriptome in Veselovska et al. (2015), 

suggesting that imprinted regions are not particularly enriched in or depleted for at least 

oocyte-specific TE-associated transcripts. In addition, our results results agree with 

Veselovska et al. (2015) that TEs acting as promoters are mostly LTR-MaLR elements. 

Furthermore, we did not identify a high number of ERVK-initiated transcripts, associated 
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with placenta-specific non-canonical imprinting (Hanna et al. 2019, and Bogutz et al., under 

review), not even in clusters with transcripts highly expressed in placenta.  

This thesis serves as a basis for future research investigating the level of species-specificity 

of imprinted transcripts and other transcripts in imprinted regions. The existing manuscript 

(Bogutz et al., under review) describes the species specificity of some imprinted transcripts 

expressed in the oocytes of mouse, rat and human. By performing de novo transcriptome 

assembly and expression analysis in other mammalian species we can expand the study to 

more species and especially more developmental stages. The species specificity is also 

hypothesized by the use of TEs as promoters - those transcripts with TE promoters are more 

likely to be specific only for species where those TEs are present. In addition, if some 

transcripts are conserved between species, we can analyze whether their expression profile is 

the same in different species. By selecting only ERVK-initiating transcripts, we can explore 

non-canonical imprinting, its conservation between species and its apparent specificity for 

placenta lineage. Moreover, the analysis presented in this thesis will be improved by 

differentiating between known and novel transcripts, and between imprinted, unknown and 

bi-allelically expressed transcripts (particularly in terms of their expression profiles and TE 

analysis). As a different future direction, we selected candidate transcripts with interesting 

expression profiles, which could be tested for their functions (by their downegulation, 

knock-out, over-expression etc.) in oocyte and pre-implantation embryos. 
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6. Conclusion 
 
 
In this project, we for the first time assembled the complete transcriptome of mouse 

imprinted regions across development using publicly available RNA-seq datasets. This led to 

the identification of a number of novel, previously unannotated, transcripts, with potential 

functional roles in development or in the regulation of imprinting in the respective imprinted 

gene cluster. Transcripts in the imprinted regions appear to be mostly expressed in a specific 

developmental stage or period. Their expression does not differ largely between adult 

somatic tissues with the exception of brain expressing a considerable number of brain-

specific transcripts. Despite the cell type- or developmental-specificity of the transcripts, 

they do not appear to be regulated by specific transcription factors. A substantial proportion 

of transcripts highly expressed in the oocytes or preimplantation embryos uses transposable 

elements as promoters, particularly LTR-MaLR elements, however, the frequency does not 

differ from the overall proportion of transposable elements-initiated transcripts in the 

oocytes. Despite the association of ERVK-initiated transcripts with placenta-specific non-

canonical imprinting, we did not identify a large number of placenta-specific ERVK-

initiated transcripts. This suggests that there are probably not many more non-canonically 

imprinted transcripts than those few already identified. This project will serve as a basis for 

future research studying species-specificity of transcripts in imprinted regions across 

mammalian species, and their association with transposable elements. In addition, selected 

transcripts will be functionally tested in the laboratory for their potential functions in the 

oocytes and in embryonic development. 
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8. Supplementary files and tables 
 

• Supplementary file 1. Python script used for gtf filtering 

• Supplementary file 2. Filtered gtf file (on CD) 

• Supplementary file 3. R script for the heatmap and clustering analysis 

•  Supplementary file 4. Python script used to extract sequences 

• Supplementary table 1. List of datasets used in this project 

• Supplementary table 2. Quantification table (on CD) 

• Supplementary table 3. List of imprinted regions in the format chromosome:start-end 

• Supplementary table 4. Summary of sequence motifs analysis results 
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Supplementary file 1. Python script used for gtf filtering (Written by Sylvia Ramirez, edited 

by Nikolas Tolar) 
 

# Python code filters regions based on chromosome and specific start and end of 
bases. 
#and, makes an extra filtering for removing transcripts with one exon, from a 
subset of genes.  
 
 
import re 
import os 
 
input_filename = "rat_merged.gtf" 
 
chom_start_end_file = "instructions.txt" #no header, 3 columns - 
choromosome,start,end (separated by tabs) 
 
 
 
''' 
 
nik edit begins ------------------------ 
''' 
 
chromosomes = [] 
bases = [] 
 
feed_file = open(chom_start_end_file,'r') 
 
line = feed_file.readline() 
 
while line != '': 
    line_split = line.split('\t') 
    chromosomes.append(line_split[0]) 
    bases.append([int(line_split[1]),int(line_split[2])]) 
    line = feed_file.readline() 
 
''' 
nik edit ends   ------------------------ 
 
''' 
 
# creates output file name: input_filename + filtered.gtf 
output_filename = input_filename[:input_filename.rfind(".")] + 
"_exons_filtering_subset.gtf" 
 
# opens the input file 
with open(input_filename) as f: 
    # reads all lines 
    lines = f.readlines() 
 
# closes input file 
f.close() 
# gets number of lines (used for progress) 
count_lines = len(lines) 
 
# initializes counter to 0 (used for progress) 
counter = 0 
 
# counter findings 
findings = 0 
 
# opens output file 
#of = open(output_filename, "w") 
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#open temp file 
of = open("temp.gtf", "w") 
 
startAt_history = {} 
 
def indexFrom(input_data, search_for, startAt): 
    for i in range(startAt, len(input_data)): 
        if input_data[i] == search_for: 
            return i 
 
def geneids_in_region(): 
    print("Initializing...") 
    global counter, findings, startAt_history 
 
    # if one transcript is within the region => set it to true 
    for l in lines: 
 
        counter += 1 
        # splits line by tab and creates an array 
        l_data = re.split(r'\t+', str(l)) 
 
        if l_data[2] == "exon": 
 
            # checks if same chromosome (string) 
            if l_data[0] in chromosomes: 
                startAt_history[l_data[0]] = 0 
 
                for x in chromosomes: 
                    if x == l_data[0]: 
 
                        startAt = 0 
                        if l_data[0] in startAt_history: 
                            startAt = startAt_history[l_data[0]] 
 
                        index = indexFrom(chromosomes, l_data[0], startAt) 
 
                        startAt_history[l_data[0]] = index + 1 
 
                        b = bases[index] 
                        l_start_base = b[0] 
                        l_end_base = b[1] 
                        # checks start position 
                        if l_start_base <= int(l_data[3]) <= l_end_base: 
                            # checks end position 
                            if l_start_base <= int(l_data[4]) <= l_end_base: 
                                of.write(str(l)) 
                                findings += 1 
 
        # prints progress 
        #print(input_filename + ": " + str(counter) + "/" + str(count_lines) + " 
Found: " + str(findings)) 
        #if counter%10000 == 0: 
            #print("First cleavage " + str(counter) +" Found: " + str(findings)) 
 
 
geneids_in_region() 
 
 
# closes the output file 
of.close() 
 
############################## 
#Additional filtering 
#reading temporary file 
 
with open("temp.gtf") as f: 
    # reads all lines 
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    lines_tmp2 = f.readlines() 
 
#remove temporary file 
os.remove("temp.gtf") 
 
####### 
#reading exons that need to be remove 
####### 
 
import pandas as pd 
 
 
dataset=pd.read_csv("rat_to_be_removed_if_1_exon.txt",delimiter="\t") 
 
#create list with values 
remove_marker = dataset["Probe"].tolist() 
 
#make format as we have in our transcript_id list  
for k in range(len(remove_marker)): 
    remove_marker[k] = '"{0}"'.format(remove_marker[k]) 
 
 
print("\n\nThird cleavage start...\n") 
transcript_id_2 = [] 
 
for i in range(len(lines_tmp2)): 
    data_from_line = [] 
    #split line for extracting ids 
    for j in lines_tmp2[i].split(";")[1:-1]: 
        data_from_line.append(j.split(" ")[2]) 
         
    transcript_id_2.append(data_from_line[0]) 
 
 
# find delete from lists needed lines 
count = 0 
for l in range(len(remove_marker)): 
#    if counter%1 == 0: 
#        print("Found for removing: " + str(count)) 
    if transcript_id_2.count(remove_marker[l]) == 1: 
         index = transcript_id_2.index(remove_marker[l]) 
         print(index) 
         del transcript_id_2[index] 
         del lines_tmp2[index] 
         count += 1 
     
 
#write into file 
of = open(output_filename, "w") 
for i in range(len(lines_tmp2)): 
    of.write(lines_tmp2[i]) 
of.close() 
print("\nOutput file: " + output_filename) 
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Supplementary file 3. R script for the heatmap and clustering analysis 

 
 
library (gplots) 
 
data <- read.delim ("Nina_for_heatmap.txt") 
 
rnames <- data[,1] 
 
mat_data <- data.matrix(data[,2:ncol(data)]) 
 
rownames(mat_data) <- rnames 
 
hr <- hclust(as.dist(1-cor(t(mat_data), method="pearson")), 
method="complete") 
 
colorRampPalette(c("blue","yellow")) -> colour.gradient 
 
heatmap.2(mat_data, col=colour.gradient, breaks=seq(from=-8,to=8, 
by=0.001), Rowv=as.dendrogram(hr), Colv=FALSE, 
          scale="none", dendrogram="none", key=T, keysize=1, 
density.info="none", hclust=function(x) hclust(x,method="complete"), 
          distfun=function(x) as.dist((1-cor(t(x)))/2), 
          trace="none",cexCol=1.2, labRow=NA) 
 
data$clusternumber <- cutree (hr, 20)   
 
write.table(data, "Nina_clusters.txt") 
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Supplementary file 4. Python script used to extract sequences (written by Nikolas Tolar) 

 
### NON GTF 
 
### Nikolas Tolar data extraction tool, at JCU 2019 
 
# ----- Editable part ----- 
 
 
genes_name = 'Mus.fa' 
annotation_name = 'Nina_wide_promoters_all.txt' 
output = open('Nina_wide_cluster_16.txt','a') 
query = open('cluster_16.txt') 
merge = 0 
 
 
''' 
    HINT: always edit strings in between the '' symbols 
         
    genes_name = files containing raw DNA sequence - file names should 
follow the 
                 pattern Xiiii where X is number/letter of chromosome and 
                 iiii is the actual name that is shared with all other 
files. 
                  
                 Variable genes_name holds the part iiii that is shared 
                  
    annotation = file containing names of probes and corresponding 
locations etc.  
 
    output_file = name of the file the results will save into (if existing 
then results will append, otherwise new file will be created) 
 
    transcript_name = name of target transcript 
 
    output_header = header of output file (FASTA format) 
 
    merge = 1 means that the probes will be merged (connected) together 
            0 means that the probes will be separated 
     
''' 
 
# ----- Do-not-touch-me part ----- 
 
def caller(value,neg,k=0): 
    ret = '' 
 
    if neg == 0: 
        ret = ret + '_positive_strand_oc_' + str(k) + '\n' 
    else: 
        ret = ret + '_negative_strand_oc_' + str(k) + '\n' 
 
    return ret 
 
def translate_read_back(string): 
 
    string_new = string[len(string)-1:0:-1] + string[0] 
 
    string_new = string_new.replace('A','R') 
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    string_new = string_new.replace('T','A') 
    string_new = string_new.replace('R','T') 
 
    string_new = string_new.replace('C','F') 
    string_new = string_new.replace('G','C') 
    string_new = string_new.replace('F','G') 
 
    return string_new 
 
 
def data_extraction(text, gene_pool): 
 
    start = int(text[2]) 
    stop = int(text[3]) 
 
    segment = gene_pool[start-1:stop] 
 
    return segment 
 
def insert_newlines(string, every=60): 
    lines = [] 
 
    for i in range(0, len(string), every): 
        lines.append(string[i:i+every]) 
 
    ret = '\n'.join(lines) 
    return ret 
     
 
def get_exons(genes_name, annotation_name, query, merge): 
 
    transcript_name = query.readline().strip('\n') 
    while transcript_name != '': 
         
        annotation = open(annotation_name) 
        neg = 0 
        res_exons = '' 
        res_list = [] 
         
        while True: 
 
             
            text = annotation.readline() 
            if text == '': 
                break 
            if transcript_name in text: 
                text = text.split() 
# accesing correct chromosome file 
                genes = open(text[1]+genes_name) 
                genes.readline() 
                gene_pool = genes.read() 
                gene_pool = ''.join(gene_pool.split()) 
                genes.close() 
                 
                if text[4] == '-': 
                    neg = 1 
                     
                if merge == 1: 
                    res_exons = res_exons + 
data_extraction(text,gene_pool) 
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                elif merge == 0: 
 
                    res_list.append(data_extraction(text,gene_pool)) 
         
        if merge == 1: 
 
            if neg == 1: 
                res_exons = translate_read_back(res_exons) 
 
            res_exons = insert_newlines(res_exons) 
 
            message = caller(merge,neg) 
         
            print('>_' + transcript_name + message + res_exons + '\n') 
            output.write('>_' + transcript_name + message + res_exons + 
'\n\n') 
             
        else: 
 
            for n in range(len(res_list)): 
                message = caller(merge,neg,n) 
 
                if neg == 1: 
                    res = '>_' + transcript_name + message + 
insert_newlines(translate_read_back(res_list[n])) 
 
                else: 
                    res = '>_' + transcript_name + message + 
insert_newlines(res_list[n]) 
 
                print(res + '\n') 
                output.write(res + '\n\n') 
 
 
        annotation.close() 
        transcript_name = query.readline().strip('\n') 
 
 
 
         
 
get_exons(genes_name, annotation_name, query, merge) 
 
 
 
output.close() 
query.close() 
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Supplementary table 1. List of datasets used in this project 

 

Publication Cell type Accession 
code 

RNA type Mouse strain Full link 

 
Veselovska et al. 

(2015) 

d5 oocytes 

GSE70116 

total RNA C57BL/6Babr 
https://www.ncbi.nlm.nih.

gov/pubmed/26408185 d10 oocytes total RNA C57BL/6Babr 

d15 oocytes total RNA C57BL/6Babr  
GV oocytes total RNA C57BL/6Babr  

Zhang et al. 
(2016) 

d10 oocytes 

GSE71434 

polyA RNA C57BL/6N 

https://www.ncbi.nlm.nih.
gov/pubmed/27626382 

d14 oocytes polyA RNA C57BL/6N 

GV oocytes polyA RNA C57BL/6N 

MII oocytes polyA RNA C57BL/6N 

zygote polyA RNA C57BL/6N x PWK 

early 2C embryo polyA RNA C57BL/6N x PWK 

late 2C embryo polyA RNA C57BL/6N x PWK 

4C embryo polyA RNA C57BL/6N x PWK 

8C embryo polyA RNA C57BL/6N x PWK  
32C embryo - ICM  polyA RNA C57BL/6N x PWK  

Wang et al. 
(2018) 

MII oocytes 

GSE98150 

total RNA B6D2F1 (C57BL/6 
x DB/2)  

2C embryo total RNA B6D2F1 (C57BL/6 
x DB/2)  

4C embryo total RNA B6D2F1 (C57BL/6 
x DB/2)  

8C embryo total RNA B6D2F1 (C57BL/6 
x DB/2)  

morula embryo total RNA B6D2F1 (C57BL/6 
x DB/2)  

E3.5 - ICM total RNA B6D2F1 (C57BL/6 
x DB/2)  

E3.5 - TE total RNA 
B6D2F1 (C57BL/6 

x DB/2)  

 
E6.5 - Epi total RNA B6D2F1 (C57BL/6 

x DB/2)  

 
E6.5 - Exe total RNA 

B6D2F1 (C57BL/6 
x DB/2)  

Zhang et al. 
(2018) 

E3.5 - ICM 

GSE76505 

polyA RNA C57BL/6N x 
DBA/2N 

https://www.ncbi.nlm.nih.
gov/pubmed/29203909 

https://www.ncbi.nlm.nih.
gov/pubmed/28806168 

E3.5 - TE polyA RNA 
C57BL/6N x 

DBA/2N 

E4.0 - ICM polyA RNA C57BL/6N x 
DBA/2N 

E5.5 - Epi polyA RNA 
C57BL/6N x 

DBA/2N 

E5.5 - VE polyA RNA C57BL/6N x 
DBA/2N 

E6.5 - Epi polyA RNA 
C57BL/6N x 

DBA/2N 

E6.5 - VE polyA RNA C57BL/6N x 
DBA/2N 

Ectoderm polyA RNA C57BL/6N x 
DBA/2N 

Mesoderm polyA RNA C57BL/6N x 
DBA/2N 

Endoderm polyA RNA C57BL/6N x 
DBA/2N 

 
Primitive_streak  polyA RNA 

C57BL/6N x 
DBA/2N  
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Andergassen et 
al. (2017) 

ESCs 

GSE75957 

total RNA FVB/NJxCAST/EiJ 

 

E12.5_liver total RNA FVB/NJxCAST/EiJ 

E16.5_liver total RNA FVB/NJxCAST/EiJ 

E16.5_brain total RNA FVB/NJxCAST/EiJ 

E16.5_heart total RNA FVB/NJxCAST/EiJ 

E9.5_VE total RNA FVB/NJxCAST/EiJ 

E12.5_VE total RNA FVB/NJxCAST/EiJ 

E16.5_VE total RNA FVB/NJxCAST/EiJ 

E12.5_placenta total RNA FVB/NJxCAST/EiJ 

E16.5_placenta total RNA FVB/NJxCAST/EiJ 

D3_tongue total RNA FVB/NJxCAST/EiJ 

D3_brain total RNA FVB/NJxCAST/EiJ 

adult_brain total RNA FVB/NJxCAST/EiJ 

adult_liver total RNA FVB/NJxCAST/EiJ 

adult_heart total RNA FVB/NJxCAST/EiJ 

adult_lung total RNA FVB/NJxCAST/EiJ 

adult_spleen total RNA FVB/NJxCAST/EiJ 

adult_thymus total RNA FVB/NJxCAST/EiJ 

adult_leg_muscle total RNA FVB/NJxCAST/EiJ 

 
adult_virgin_mammary

_gland total RNA FVB/NJxCAST/EiJ 
 

 
lactating_mammary_gla

nd 
total RNA FVB/NJxCAST/EiJ 

 

 lactating_brain total RNA FVB/NJxCAST/EiJ  

Hanna et al. 
(2019) 

E7.5_Epi 
GSE124216 

polyA RNA 
C57BL/6Babr x 

CAST https://www.ncbi.nlm.nih.
gov/pubmed/31665063/ 

E7.5_Exe polyA RNA C57BL/6Babr x 
CAST 
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Supplementary table 3. List of imprinted regions in the format chromosome:start-end 

 

Mouse imprinted regions 
1:63180487-63445890 2:168768109-169633012 
10:13009184-13499539 2:174123071-174415803 
10:96622810-97565127 3:102206267-102720230 
11:11808963-14599275 3:108101433-108148320 
11:119040970-119267886 3:41083047-41626719 
11:22519235-22990518 4:150652175-150897133 
11:51072800-51253650 5:135251231-13535324 
11:80968706-81197914 5:18360356-20758662 
11:97576186-97627388 5:35615353-35697179 
12:109028453-110447119 5:88783282-88886817 
13:108407783-110054186 6:30693750-31356742 
14:73596143-74732296 6:3603532-5483350 
15:100687920-100761746 6:58905233-58907076 
15:72034228-73090391 7:102096865-102119397 
15:96699699-97244073 7:110639359-110850606 
17:3696262-5841327 7:128546980-128696440 
17:7011300-14829330 7:142540748-144838082 
18:12941841-13006989 7:25754758-25802474 
19:38819238-38930914 7:58829421-62778422 
19:50778663-52943416 7:6571402-6995299 
2:10256530-11172107 8:1198769956-124369048 
2:105017905-105224319 8:80739498-80980732 
2:122461138-122681232 8:88751946-90247039 
2:152635199-152736250 9:107903140-107928468 
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Supplementary table 4. Summary of sequence motifs analysis results 

 

 
 
 
 
 
  
 
 
 

Sequence Logo E-value Positives Negatives Factors

motif1 CACACACR 2.20E-18 104 / 180 18 / 180

UP00034_2 (Sox7_secondary)
MA1107.1 (KLF9)
UP00026_2 (Zscan4_secondary)
MA0493.1 (Klf1)
GLI2_DBD_1

motif2 HATAWATA 4.10E-17 120 / 180 32 / 180

FOXC1_DBD_1
UP00094_2 (Zfp128_secondary)
CPEB1_full
UP00029_1 (Tbp_primary)
FOXD2_DBD_1

motif3 AAAWAAAA 1.40E-14 148 / 180 66 / 180

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00090_2 (Elf3_secondary)
UP00028_2 
(Tcfap2e_secondary)
UP00058_2 (Tcf3_secondary)

motif4 ATTTTAWT 1.90E-11 76 / 180 12 / 180

UP00121_1 (Hoxd10_2368.2)
UP00217_1 (Hoxa10_2318.1)
UP00180_1 (Hoxd13_2356.1)
UP00078_1 (Arid3a_primary)
UP00133_1 (Cdx2_4272.1)

motif5 GAGRMAGA 1.20E-10 146 / 180 74 / 180 No maches

motif6 TTWAAAWA 3.70E-09 124 / 180 54 / 180
UP00077_2 (Srf_secondary)
MA1125.1 (ZNF384)

motif7 GAACTCAS 5.60E-09 96 / 180 30 / 180

MA0693.2 (VDR)
RARA_full_2
VDR_full
UP00064_2 (Sox18_secondary)

motif8 TACACABA 7.10E-09 97 / 180 31 / 180

UP00034_2 (Sox7_secondary)
MA0481.2 (FOXP1)
ZSCAN4_full
MA1155.1 (ZSCAN4)

motif9 GGCWGGCS 1.30E-08 100 / 180 34 / 180

ZNF306_full
MA1100.1 (ASCL1)
Hic1_DBD_1
Hic1_DBD_2
MA0739.1 (Hic1)

motif10 ATTAAAGG 3.10E-08 70 / 180 14 / 180

MA0151.1 (Arid3a)
Tcf7_DBD
MA0769.1 (Tcf7)
TCF7L1_full
MA1421.1 (TCF7L1)

narrow_cl1
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motif1 AAAAWAAA 5.10E-19 111 / 130 33 / 130

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00058_2 (Tcf3_secondary)
UP00090_2 (Elf3_secondary)
UP00028_2 
(Tcfap2e_secondary)

motif2 ACABACAC 4.50E-14 79 / 130 13 / 130

MA1107.1 (KLF9)
UP00042_2 (Gm397_secondary)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00034_2 (Sox7_secondary)

motif3 CCCCDCCC 1.30E-08 93 / 130 35 / 130

MA0599.1 (KLF5)
UP00099_2 (Ascl2_secondary)
MA0079.3 (SP1)
SP1_DBD
UP00043_2 (Bcl6b_secondary)

motif4 AAACAAAH 2.00E-07 96 / 130 41 / 130

UP00041_1 (Foxj1_primary)
Foxj3_DBD_4
UP00061_2 (Foxl1_secondary)
FOXJ2_DBD_3
MA0481.2 (FOXP1)

motif5 AGAAACCY 2.90E-06 65 / 130 17 / 130 UP00232_1 (Dobox4_3956.2)

motif6 ATAMATAW 2.90E-06 65 / 130 17 / 130

POU3F3_DBD_3
FOXC2_DBD_2
POU2F3_DBD_2
Foxc1_DBD_2
POU2F1_DBD_2

motif7 GGYGGCGS 4.50E-06 60 / 130 14 / 130

MA0599.1 (KLF5)
MA0079.3 (SP1)
MA1102.1 (CTCFL)
CTCF_full
UP00007_1 (Egr1_primary)

motif8 CCAGCCYG 1.30E-05 63 / 130 17 / 130

Hic1_DBD_1
UP00035_1 (Hic1_primary)
GCM1_full_2
MA0646.1 (GCM1)
GLI2_DBD_2

motif9 AMATAMA 1.40E-05 117 / 130 73 / 130

FOXC2_DBD_2
FOXC1_DBD_1
Foxc1_DBD_1
FOXL1_full_2
FOXJ3_DBD_3

motif10 ACATTYCC 2.20E-05 46 / 130 7 / 130

UP00013_1 (Gabpa_primary)
FLI1_full_1
MA0475.2 (FLI1)
Tp53_DBD_3
MA0106.3 (TP53)

narrow_cl2
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motif1 AAAAWAAA 1.40E-41 369 / 447 164 / 447

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00058_2 (Tcf3_secondary)
UP00090_2 (Elf3_secondary)
UP00028_2 
(Tcfap2e_secondary)

motif2 AAAAWAAA 3.10E-40 301 / 447 96 / 447

UP00034_2 (Sox7_secondary)
GLI2_DBD_1
MA1107.1 (KLF9)
UP00026_2 (Zscan4_secondary)
ZSCAN4_full

motif3 TATWTATW 1.60E-27 246 / 447 79 / 447

UP00094_2 (Zfp128_secondary)
UP00029_1 (Tbp_primary)
MEF2B_full
MEF2D_DBD
MA0660.1 (MEF2B)

motif4 TATWTATW 1.40E-26 338 / 447 168 / 447
UP00080_2 (Gata5_secondary)
MA0482.1 (Gata4)

motif5 GGAGGCAK 5.70E-22 241 / 447 89 / 447 YY2_full_2

motif6 CCCCDCCC 1.50E-21 261 / 447 107 / 447

MA0599.1 (KLF5)
MA0079.3 (SP1)
UP00099_2 (Ascl2_secondary)
SP1_DBD
UP00043_2 (Bcl6b_secondary)

motif7 AGAAAATR 6.70E-19 252 / 447 107 / 447 MA0517.1 (STAT1::STAT2)

motif8 TAAWWATA 7.80E-19 240 / 447 97 / 447

MEF2A_DBD
MA0052.3 (MEF2A)
MEF2B_full
MEF2D_DBD
MA0660.1 (MEF2B)

motif9 ACANACAT 3.90E-18 278 / 447 133 / 447

MA0041.1 (Foxd3)
UP00041_1 (Foxj1_primary)
Foxc1_DBD_2

motif10 AAMARCAA 3.50E-17 339 / 447 200 / 447

UP00037_1 (Zfp105_primary)
MA0614.1 (Foxj2)
UP00025_2 (Foxk1_secondary)
FOXJ3_DBD_1
Foxj3_DBD_3

narrow_cl3
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motif1 CCTSCCTC 5.30E-10 69 / 101 16 / 101

 UP00050_2 
(Bhlhb2_secondary)
MA0471.1 (E2F6)
MA0079.3 (SP1)
ZNF784_full

motif2 AAAHAAAA 2.40E-09 87 / 101 36 / 101

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00090_2 (Elf3_secondary)
UP00028_2 
(Tcfap2e_secondary)
UP00058_2 (Tcf3_secondary)

motif3 ACACAYAS 1.10E-07 74 / 101 25 / 101

MA1107.1 (KLF9)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00042_2 (Gm397_secondary)
UP00034_2 (Sox7_secondary)

motif4 CTCYTCCC 5.80E-07 62 / 101 16 / 101

MA0516.1 (SP2)
MA0528.1 (ZNF263)
UP00070_2 (Gcm1_secondary)
MA0079.3 (SP1)
MA0599.1 (KLF5)

motif5 CCCCDCCC 8.80E-07 75 / 101 28 / 101

MA0599.1 (KLF5)
UP00099_2 (Ascl2_secondary)
MA0079.3 (SP1)
SP1_DBD
MA0493.1 (Klf1)

motif6 CCASCACC 5.90E-05 54 / 101 14 / 101

MA0138.2 (REST)
ZBTB7A_DBD
ZBTB7B_full
MA0694.1 (ZBTB7B)
ZBTB7C_full

motif7 GARAGAGA 2.80E-04 61 / 101 21 / 101 MA0508.2 (PRDM1)

motif8 GGCTGGCY 3.70E-04 57 / 101 18 / 101

ZNF306_full
Hic1_DBD_1
Hic1_DBD_2
MA0739.1 (Hic1)
MA0505.1 (Nr5a2)

motif9 GAMAGCCA 3.20E-04 49 / 101 12 / 101

UP00258_1 (Tgif2_3451.1)
YY2_DBD
MA0748.1 (YY2)
ZNF713_full
MA0513.1 
(SMAD2::SMAD3::SMAD4)

motif10 AAATAHAT 7.00E-05 65 / 101 23 / 101

FOXC1_DBD_1
FOXC2_DBD_2
FOXL1_full_2
Foxc1_DBD_1
UP00058_2 (Tcf3_secondary)

narrow_cl4
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motif1 TGTGTGYR 5.90E-13 76 / 101 17 / 101

UP00034_2 (Sox7_secondary)
MA1107.1 (KLF9)
UP00026_2 (Zscan4_secondary) 
MA0493.1 (Klf1)
ZSCAN4_full

motif2 TTATTTWW 3.00E-11 75 / 101 19 / 101

MEF2A_DBD
MA0052.3 (MEF2A)
FOXC2_DBD_2
FOXC1_DBD_1
MEF2B_full

motif3 CWCCCTCS 8.00E-10 71 / 101 18 / 101

MA0039.3 (KLF4)
MA0471.1 (E2F6)
MA0057.1 (MZF1(var.2))
MA0528.1 (ZNF263)
MA0470.1 (E2F4)

motif4 AAAAARAA 3.20E-09 91 / 101 42 / 101

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00028_2 
(Tcfap2e_secondary)
UP00090_2 (Elf3_secondary)
UP00058_2 (Tcf3_secondary)

motif5 AAAASAAA 6.00E-07 68 / 101 21 / 101

MA0442.2 (SOX10)
MA0514.1 (Sox3)
UP00061_2 (Foxl1_secondary)
MA1152.1 (SOX15)
UP00039_2 (Foxj3_secondary)

motif6 CTTTWATC 2.80E-05 44 / 101 7 / 101

UP00029_2 (Tbp_secondary)
MA0151.1 (Arid3a)
TCF7L1_full
MA1421.1 (TCF7L1)
Tcf7_DBD

motif7 CACAGAKA 4.20E-05 53 / 101 13 / 101

MA0140.2 (GATA1::TAL1)
FOXB1_DBD_1
UP00080_2 (Gata5_secondary)

motif8 ACAGHCAG 5.40E-05 63 / 101 21 / 101

MA0513.1 
(SMAD2::SMAD3::SMAD4)
UP00258_1 (Tgif2_3451.1)

motif9 CTCCAKCC 1.00E-04 56 / 101 16 / 101

MA1121.1 (TEAD2)
MA0471.1 (E2F6)
UP00033_1 (Zfp410_primary)
MA0470.1 (E2F4)
ZNF410_DBD

motif10 AWATATRT 3.90E-05 47 / 101 9 / 101

UP00094_2 (Zfp128_secondary)
NEUROG2_full
MA0669.1 (NEUROG2)
NEUROG2_DBD
UP00029_1 (Tbp_primary)

narrow_cl5
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No enriched motif foundnarrow_cl6

motif1 CACAYACA 3.90E-35 245 / 406 66 / 406

UP00034_2 (Sox7_secondary)
MA1107.1 (KLF9)
UP00026_2 (Zscan4_secondary)
MA0493.1 (Klf1)
ZSCAN4_full

motif2 AAAAWAAA 1.00E-34 346 / 406 170 / 406

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00058_2 (Tcf3_secondary)
UP00090_2 (Elf3_secondary)
UP00028_2 
(Tcfap2e_secondary)

motif3 TATWTWTA 1.20E-24 272 / 406 114 / 406

MEF2B_full
MEF2D_DBD
MA0660.1 (MEF2B)
MA0773.1 (MEF2D)
UP00094_2 (Zfp128_secondary)

motif4 CCCDCCCC 4.50E-23 230 / 406 81 / 406

MA0079.3 (SP1)
MA0599.1 (KLF5)
UP00043_2 (Bcl6b_secondary)
SP1_DBD
MA0516.1 (SP2)

motif5 GAGRSAGA 2.70E-22 293 / 406 142 / 406 No matches

motif6 AAABAAAA 6.90E-18 333 / 406 203 / 406

Foxj3_DBD_4
UP00061_2 (Foxl1_secondary)
UP00041_1 (Foxj1_primary)
MA1152.1 (SOX15)
FOXJ2_DBD_3

motif7 TSTCTGTR 3.90E-16 268 / 406 136 / 406
MA0002.2 (RUNX1)
UP00034_2 (Sox7_secondary)
FOXB1_DBD_1

motif8 ATACATAB 1.20E-15 175 / 406 58 / 406

UP00094_2 (Zfp128_secondary)
BHLHE22_DBD
MA0817.1 (BHLHE23)

motif9 GGRAGGAR 3.80E-14 270 / 406 145 / 406

MA0149.1 (EWSR1-FLI1)
MA0528.1 (ZNF263)
ELF3_full
MA0640.1 (ELF3)
UP00050_2 (Bhlhb2_secondary)

motif10 ATTTAHWT 4.10E-12 292 / 406 176 / 406

FOXC1_DBD_1
FOXB1_DBD_3
FOXC1_DBD_3
MA0032.2 (FOXC1)
MA0845.1 (FOXB1)

narrow_cl7
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motif1 CACACRC 6.50E-20 149 / 195 50 / 195

UP00042_2 (Gm397_secondary)
ZSCAN4_full
MA1155.1 (ZSCAN4)
GLI2_DBD_1
UP00034_2 (Sox7_secondary)

motif2 AWAAAKAA 7.00E-21 50 / 195 80 / 195

MEF2A_DBD
MA0052.3 (MEF2A)
UP00073_2 (Foxa2_secondary)
MEF2D_DBD
MA0773.1 (MEF2D)

motif3 TCTCTSTR 4.90E-16 163 / 195 75 / 195
FOXB1_DBD_1
MA0140.2 (GATA1::TAL1)

motif4 AMATRTA 6.30E-15 180 / 195 103 / 195
UP00025_1 (Foxk1_primary)
UP00061_1 (Foxl1_primary)
ZNF232_full

motif5 AAKCCCAG 9.90E-14 114 / 195 32 / 195

MA0038.1 (Gfi1)
MA0483.1 (Gfi1b)
PITX1_full_2
MA0682.1 (Pitx1)
PITX3_DBD

motif6 CAGSCASG 6.40E-13 135 / 195 52 / 195 MA1114.1 (PBX3)

motif7 CTKCYTCC 8.70E-13 161 / 195 81 / 195
SPDEF_DBD_3
MA0528.1 (ZNF263)
ETV6_full_1

motif8 AWTAAAAA 1.30E-11 125 / 195 46 / 195

CPEB1_full
MSX1_DBD_1
HOXA13_full_1
MA0650.1 (HOXA13)
Hoxc10_DBD_2

motif9 GAMAGARA 9.30E-11 153 / 195 77 / 195 MA0508.2 (PRDM1)

motif10 CCCMCCCC 2.30E-10 99 / 195 28 / 195

ZNF740_full
ZNF740_DBD
MA0753.1 (ZNF740)
UP00021_1 (Zfp281_primary)
Zfp740_DBD

narrow_cl8
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motif1 ACAMACAC 1.50E-23 129 / 217 23 / 217

MA1107.1 (KLF9)
UP00042_2 (Gm397_secondary)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00034_2 (Sox7_secondary)

motif2 AAAMAAAA 1.60E-18 170 / 217 69 / 217

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00028_2 
(Tcfap2e_secondary)
UP00090_2 (Elf3_secondary)
UP00058_2 (Tcf3_secondary)

motif3 ANAAATAA 7.10E-14 145 / 217 55 / 217

FOXC2_DBD_2
MEF2A_DBD
MA0052.3 (MEF2A)
FOXC1_DBD_1
MEF2D_DBD

motif4 GARAGARA 1.70E-13 170 / 217 82 / 217 MA0508.2 (PRDM1)

motif5 CCCNCCCC 3.40E-13 171 / 217 84 / 217

MA0599.1 (KLF5)
MA0079.3 (SP1)
UP00043_2 (Bcl6b_secondary)
SP1_DBD
MA0516.1 (SP2)

motif6 TTTWAAWA 3.30E-11 147 / 217 64 / 217 MA1125.1 (ZNF384)

motif7 CACAYANA 1.60E-09 164 / 217 87 / 217

UP00026_1 (Zscan4_primary)
UP00034_2 (Sox7_secondary)
UP00026_2 (Zscan4_secondary)
MA1107.1 (KLF9)
UP00014_2 (Sox17_secondary)

motif8 AGGAGGHG 3.90E-09 123 / 217 48 / 217
MA0528.1 (ZNF263)
UP00057_2 (Zic2_secondary)
UP00102_2 (Zic1_secondary)

motif9 CCCAGCAS 2.40E-08 118 / 217 46 / 217

MA0591.1 (Bach1::Mafk)
UP00057_2 (Zic2_secondary)
MA0144.2 (STAT3)
UP00102_2 (Zic1_secondary)

motif10 CCCAGCAS 3.40E-08 62 / 217 9 / 217
UP00094_2 (Zfp128_secondary)
UP00029_1 (Tbp_primary)

narrow_cl9
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motif1 AAAAWAAA 1.10E-16 121 / 147 42 / 147

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00058_2 (Tcf3_secondary)
UP00090_2 (Elf3_secondary)
UP00028_2 
(Tcfap2e_secondary)

motif2 ACACACMY 1.90E-14 107 / 147 32 / 147

MA1107.1 (KLF9)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00034_2 (Sox7_secondary)
UP00042_2 (Gm397_secondary)

motif3 GARGCAGR 7.70E-07 105 / 147 48 / 147 No  matches

motif4 AKWATATA 6.90E-07 57 / 147 10 / 147 No  matches

motif5 GCRCACR 1.70E-06 104 / 147 48 / 147

ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00042_2 (Gm397_secondary)
UP00026_2 (Zscan4_secondary)
MTF1_DBD

motif6 AAAYAAA 1.90E-06 139 / 147 95 / 147

UP00073_1 (Foxa2_primary)
MA0851.1 (Foxj3)
UP00039_1 (Foxj3_primary)
UP00041_1 (Foxj1_primary)
UP00025_1 (Foxk1_primary)

motif7 CCCCDCCC 3.80E-06 104 / 147 49 / 147

MA0599.1 (KLF5)
MA0079.3 (SP1)
UP00099_2 (Ascl2_secondary)
SP1_DBD
UP00043_2 (Bcl6b_secondary)

motif8 CTGKAGA 5.40E-06 117 / 147 64 / 147 No  matches

motif9 TTAAAAWR 1.70E-06 104 / 147 48 / 147

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
MSX1_DBD_1
Msx3_DBD_1
MSX2_DBD_1

motif10 CSGCCRCC 7.10E-06 59 / 147 13 / 147

UP00007_1 (Egr1_primary)
MA0079.3 (SP1)
UP00000_2 (Smad3_secondary)
UP00002_1 (Sp4_primary)
MA0516.1 (SP2)

narrow_cl10
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motif1 CACACACA 5.60E-49 261 / 540 42 / 540

UP00034_2 (Sox7_secondary)
MA1107.1 (KLF9)
UP00026_2 (Zscan4_secondary)
MA0493.1 (Klf1)
ZSCAN4_full

motif2 TAWATAWA 8.30E-33 413 / 540 208 / 540

UP00094_2 (Zfp128_secondary)
UP00029_1 (Tbp_primary)
FOXC2_DBD_2
Foxc1_DBD_1
FOXC1_DBD_1

motif3 GAGAGARA 5.20E-32 325 / 540 123 / 540
UP00011_2 (Irf6_secondary)
UP00080_2 (Gata5_secondary)

motif4 CYCYCTCC 1.10E-26 123 / 540 161 / 540

MA0516.1 (SP2)
MA0528.1 (ZNF263)
MA0057.1 (MZF1(var.2))
ZNF740_full
UP00022_1 (Zfp740_primary)

motif5 AAAAAWAA 3.70E-26 448 / 540 272 / 540

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00090_2 (Elf3_secondary)
UP00028_2 
(Tcfap2e_secondary)
UP00058_2 (Tcf3_secondary)

motif6 GARGAAAA 1.20E-27 351 / 540 159 / 540 MA0152.1 (NFATC2)

motif7 ATDTACAT 3.80E-26 298 / 540 116 / 540

FOXB1_DBD_3
MA0845.1 (FOXB1)
FOXB1_DBD_2
FOXC1_DBD_3
MA0032.2 (FOXC1)

motif8 ADGCAGAG 5.60E-25 324 / 540 142 / 540 No matches

motif9 AGRGAAAG 3.00E-23 338 / 540 160 / 540

PRDM1_full
MA1116.1 (RBPJ)
ZNF282_DBD
MA1154.1 (ZNF282)
UP00086_2 (Irf3_secondary)

motif10 ARCACASA 2.00E-24 373 / 540 193 / 540

UP00042_2 (Gm397_secondary)
UP00026_2 (Zscan4_secondary)
UP00025_1 (Foxk1_primary)
MA0002.2 (RUNX1)
UP00073_1 (Foxa2_primary)

narrow_cl16
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motif1 ACACACAC 2.50E-33 166 / 180 52 / 180

MA1107.1 (KLF9)
UP00042_2 (Gm397_secondary)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00034_2 (Sox7_secondary)

motif2 ATAWATAY 8.90E-26 172 / 180 77 / 180

UP00094_2 (Zfp128_secondary
UP00008_2 (Six6_secondary)
UP00029_1 (Tbp_primary)
FOXD2_DBD_1

motif3 AATAAATA 3.90E-22 133 / 180 34 / 180

FOXC1_DBD_1
CPEB1_full
FOXC2_DBD_2
FOXL1_full_2
Hoxc10_DBD_2

motif4 CCTGCCKC 4.20E-20 162 / 180 72 / 180
MA0516.1 (SP2)
ZNF784_full
MA0079.3 (SP1)

motif5 CCCKCCCC 5.60E-18 158 / 180 71 / 180

MA0079.3 (SP1)
UP00033_2 (Zfp410_secondary)
MA0599.1 (KLF5)
UP00043_2 (Bcl6b_secondary)
MA0516.1 (SP2)

motif6 AAAAAAAA 8.70E-18 178 / 180 110 / 180

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00028_2 
(Tcfap2e_secondary)
UP00090_2 (Elf3_secondary)
UP00058_2 (Tcf3_secondary)

motif7 AYACATAC 1.20E-17 143 / 180 53 / 180 No matches

motif8 AATCCCAG 2.70E-15 151 / 180 68 / 180

MA0483.1 (Gfi1b)
MA0038.1 (Gfi1)
MA0682.1 (Pitx1)
PITX1_full_2
PITX3_DBD

motif9 ATGTGTAY 4.00E-15 132 / 180 47 / 180

MA0613.1 (FOXG1)
Foxc1_DBD_2
FOXO1_DBD_2
FOXO1_DBD_1
MA0031.1 (FOXD1)

motif10 TAWATAAA 9.10E-15 156 / 180 76 / 180

FOXC2_DBD_2
Foxc1_DBD_1
FOXC1_DBD_1
FOXL1_full_2
FOXC2_DBD_3

wide_cl1
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motif1 ACRCACAC 1.30E-25 124 / 130 40 / 130

MA1107.1 (KLF9)
UP00042_2 (Gm397_secondary)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00034_2 (Sox7_secondary)

motif2 TATAYATA 4.50E-17 97 / 130 22 / 130

UP00094_2 (Zfp128_secondary)
UP00029_1 (Tbp_primary)
FOXJ3_DBD_3
UP00008_2 (Six6_secondary)
FOXB1_DBD_3

motif3 AATATDTA 5.90E-15 117 / 130 49 / 130

FOXB1_DBD_2
FOXD2_DBD_1
FOXC1_DBD_2
FOXD3_DBD_1
FOXC2_DBD_1

motif4 CCVCGCCC 6.10E-14 92 / 130 23 / 130

UP00093_1 (Klf7_primary)
MA0079.3 (SP1)
MA0599.1 (KLF5)
SP1_DBD
UP00043_2 (Bcl6b_secondary)

motif5 CGCRCGC 2.20E-13 71 / 130 9 / 130

UP00065_1 (Zfp161_primary)
UP00001_1 (E2F2_primary)
UP00003_1 (E2F3_primary)
MA0632.1 (Tcfl5)
MA0506.1 (NRF1)

motif6 AYATAMAC 6.00E-14 120 / 130 56 / 130

FOXJ3_DBD_3
FOXJ2_DBD_3
Foxj3_DBD_4

motif7 CACMCACA 6.20E-13 116 / 130 52 / 130

GLI2_DBD_1
MA1107.1 (KLF9)
UP00034_2 (Sox7_secondary)
UP00026_2 (Zscan4_secondary)
ZNF143_DBD

motif8 TTATTTWA 4.80E-12 122 / 130 64 / 130

ARX_DBD
Arx_DBD
LMX1B_DBD
LMX1A_DBD
MA0703.1 (LMX1B)

motif9 AAAAAAAA 2.30E-11 129 / 130 82 / 130

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00028_2 
(Tcfap2e_secondary)
UP00090_2 (Elf3_secondary)
UP00058_2 (Tcf3_secondary)

motif10 TATTWWTA 5.30E-11 120 / 130 63 / 130

MEF2A_DBD
MA0052.3 (MEF2A)
MEF2B_full
MA0660.1 (MEF2B)
MEF2D_DBD

wide_cl2

No enriched motif foundwide_cl3
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motif1 ACACACAC 3.40E-20 93 / 101 24 / 101

MA1107.1 (KLF9)
UP00042_2 (Gm397_secondary)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00034_2 (Sox7_secondary)

motif2 ATAWATAA 3.70E-16 88 / 101 24 / 101

FOXC2_DBD_2
FOXC1_DBD_1
Foxc1_DBD_1
FOXL1_full_2
POU3F3_DBD_2

motif3 GTGTGTAB 9.30E-14 87 / 101 27 / 101

TBX15_DBD_1
Foxc1_DBD_2
FOXL1_full_1
MA0033.2 (FOXL1)

motif4 AAAACAAA 3.80E-13 100 / 101 51 / 101

MA0442.2 (SOX10)
MA0514.1 (Sox3)
UP00061_2 (Foxl1_secondary)
MA1152.1 (SOX15)
UP00039_2 (Foxj3_secondary)

motif5 AAAAAAAA 3.10E-12 100 / 101 53 / 101

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00028_2 
(Tcfap2e_secondary)
UP00090_2 (Elf3_secondary)
UP00058_2 (Tcf3_secondary)

motif6 CCCAGCAC 4.70E-12 86 / 101 29 / 101

MA0591.1 (Bach1::Mafk)
UP00096_2 (Sox13_secondary)
UP00007_1 (Egr1_primary)
ZNF740_full
ZNF740_DBD

motif7 DATATATA 1.90E-11 64 / 101 10 / 101
UP00029_1 (Tbp_primary)
UP00094_2 (Zfp128_secondary)
UP00008_2 (Six6_secondary)

motif8 AAAWATAA 7.20E-10 96 / 101 49 / 101

UP00073_2 (Foxa2_secondary)
MA1125.1 (ZNF384)
MA0497.1 (MEF2C)
UP00213_1 (Hoxa9_2622.2)
NFATC1_full_1

motif9 AAAGAAAA 1.80E-09 97 / 101 52 / 101

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00028_2 
(Tcfap2e_secondary)

motif10 CACACRCA 4.30E-09 79 / 101 27 / 101

UP00034_2 (Sox7_secondary)
MA1107.1 (KLF9)
UP00026_2 (Zscan4_secondary)
ZSCAN4_full
MA1155.1 (ZSCAN4)

wide_cl4



66 
 

 

 

motif1 ACACACAC 6.30E-19 90 / 101 22 / 101

MA1107.1 (KLF9)
UP00042_2 (Gm397_secondary)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00034_2 (Sox7_secondary)

motif2 TAAATAWA 5.20E-14 96 / 101 40 / 101

FOXC2_DBD_2
Foxc1_DBD_1
FOXC1_DBD_1
FOXL1_full_2
UP00073_1 (Foxa2_primary)

motif3 CCCAGCAC 1.90E-10 85 / 101 31 / 101

MA0591.1 (Bach1::Mafk)
UP00096_2 (Sox13_secondary)
UP00007_1 (Egr1_primary)
ZNF740_full
ZNF740_DBD

motif4 ATMTATAC 2.20E-09 61 / 101 11 / 101

UP00008_2 (Six6_secondary)
UP00094_2 (Zfp128_secondary)
FOXB1_DBD_3
MA0845.1 (FOXB1)
UP00232_1 (Dobox4_3956.2)

motif5 AGGCRGAG 1.20E-11 97 / 101 47 / 101 MA0065.2 (Pparg::Rxra)

motif6 CCGCCCSC 9.10E-09 61 / 101 12 / 101

UP00007_1 (Egr1_primary)
MA0079.3 (SP1)
MA0516.1 (SP2)
UP00002_1 (Sp4_primary)
KLF16_DBD

motif7 TTTAAAAA 1.00E-08 94 / 101 48 / 101
MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00114_1 (Homez_1063.2)

motif8 CACABATA 6.60E-08 94 / 101 50 / 101

T_full
MA0009.2 (T)
UP00026_1 (Zscan4_primary)
MA0140.2 (GATA1::TAL1)
UP00026_2 (Zscan4_secondary)

motif9 CGCGNGCC 8.40E-08 47 / 101 5 / 101

UP00001_1 (E2F2_primary)
UP00003_1 (E2F3_primary)
UP00065_1 (Zfp161_primary)
MA1099.1 (Hes1)
MA0632.1 (Tcfl5)

motif10 AAAWATAA 6.60E-09 99 / 101 58 / 101

UP00073_2 (Foxa2_secondary)
MA1125.1 (ZNF384)
MA0497.1 (MEF2C)
UP00213_1 (Hoxa9_2622.2)
NFATC1_full_1

wide_cl5

No enriched motif found

No enriched motif foundwide_cl6

wide_cl7
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motif1 ACACACRC 1.20E-23 117 / 123 38 / 123

UP00042_2 (Gm397_secondary)
MA1107.1 (KLF9)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00034_2 (Sox7_secondary)

motif2 TATTTWTA 2.90E-17 118 / 123 52 / 123

MEF2A_DBD
MEF2D_DBD
MA0052.3 (MEF2A)
MA0773.1 (MEF2D)
MEF2B_full

motif3 CAWATATA 1.30E-15 104 / 123 34 / 123

SRF_DBD
SRF_full
MA0083.3 (SRF)
UP00094_2 (Zfp128_secondary)

motif4 TAAATAAA 1.60E-14 107 / 123 40 / 123

FOXC2_DBD_2
Foxc1_DBD_1
FOXC1_DBD_1
FOXL1_full_2
UP00073_1 (Foxa2_primary)

motif5 AWAAATAA 4.30E-12 111 / 123 51 / 123

UP00073_2 (Foxa2_secondary)
MEF2A_DBD
MA0052.3 (MEF2A)
MA0497.1 (MEF2C)
MA1125.1 (ZNF384)

motif6 TTTAAAAA 9.30E-12 113 / 123 55 / 123
MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00114_1 (Homez_1063.2)

motif7 ATATAYWT 4.20E-12 109 / 123 48 / 123

UP00094_2 (Zfp128_secondary)
UP00029_1 (Tbp_primary)
UP00223_2 (Irx3_2226.1)
UP00250_1 (Irx5_2385.1)
UP00194_1 (Irx4_2242.3)

motif8 GCRCACRC 1.10E-11 97 / 123 34 / 123

ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00042_2 (Gm397_secondary)
UP00042_1 (Gm397_primary)
UP00026_2 (Zscan4_secondary)

motif9 CCCAGYAC 1.20E-10 108 / 123 50 / 123

UP00096_2 (Sox13_secondary)
MA0591.1 (Bach1::Mafk)
UP00007_1 (Egr1_primary)
ZNF740_full
ZNF740_DBD

motif10 CSTGCCTC 7.00E-11 107 / 123 48 / 123
MA0516.1 (SP2)
MA0079.3 (SP1)
ZNF784_full

wide_cl8

No enriched motif foundwide_cl9
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motif1 ACACACAC 1.70E-29 133 / 147 34 / 147

MA1107.1 (KLF9)
UP00042_2 (Gm397_secondary)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00034_2 (Sox7_secondary)

motif2 ATATWTAT 2.00E-17 112 / 147 31 / 147

UP00094_2 (Zfp128_secondary)
UP00029_1 (Tbp_primary)
FOXD2_DBD_1
FOXC1_DBD_2
FOXB1_DBD_3

motif3 GCAGAGGC 2.50E-17 123 / 147 43 / 147

NHLH1_full
NHLH1_DBD
MA0048.2 (NHLH1)
MA0146.2 (Zfx)
MA0065.2 (Pparg::Rxra)

motif4 AAAAAAAA 1.20E-16 145 / 147 82 / 147

MA1125.1 (ZNF384)
UP00077_2 (Srf_secondary)
UP00028_2 
(Tcfap2e_secondary)
UP00090_2 (Elf3_secondary)
UP00058_2 (Tcf3_secondary)

motif5 ATGTATRT 4.20E-16 120 / 147 42 / 147

UP00014_2 (Sox17_secondary)
UP00051_2 (Sox8_secondary)
SOX9_full_3
SOX15_full_3
Sox1_DBD_2

motif6 GCRCACAC 2.30E-16 113 / 147 34 / 147

UP00042_2 (Gm397_secondary)
ZSCAN4_full
MA1155.1 (ZSCAN4)
UP00042_1 (Gm397_primary)
UP00026_2 (Zscan4_secondary)

motif7 ATAAATAA 3.70E-15 120 / 147 44 / 147

FOXC2_DBD_2
FOXC1_DBD_1
Foxc1_DBD_1
FOXL1_full_2
Foxj3_DBD_3

motif8 CCCRCCCC 1.40E-14 127 / 147 54 / 147

MA0599.1 (KLF5)
UP00043_2 (Bcl6b_secondary)
MA0079.3 (SP1)
SP1_DBD
MA0516.1 (SP2)

motif9 CCTGTCTC 1.50E-14 118 / 147 43 / 147

MA1114.1 (PBX3)
UP00086_2 (Irf3_secondary)
MEIS3_DBD_1
MA0775.1 (MEIS3)
MA0513.1 
(SMAD2::SMAD3::SMAD4)

motif10 CGYGYGC 2.30E-14 112 / 147 37 / 147

UP00097_1 (Mtf1_primary)
MTF1_DBD
MA0863.1 (MTF1)
MA1099.1 (Hes1)
UP00065_1 (Zfp161_primary)

wide_cl10

No enriched motif foundwide_cl16


