Zobrazit minimální záznam

dc.contributor.authorSeki, Soichiro
dc.contributor.authorCupellini, Lorenzo
dc.contributor.authorBína, David
dc.contributor.authorBetti, Elena
dc.contributor.authorUrajová, Petra
dc.contributor.authorTanaka, Hideaki
dc.contributor.authorMiyata, Tomoko
dc.contributor.authorNamba, Keiichi
dc.contributor.authorKurisu, Genji
dc.contributor.authorPolívka, Tomáš
dc.contributor.authorLitvín, Radek
dc.contributor.authorFujii, Ritsuko
dc.date.accessioned2025-12-19T12:51:56Z
dc.date.available2025-12-19T12:51:56Z
dc.date.issued2025-12-13
dc.identifier.citationExciton Delocalization Promotes Far-Red Absorption in a Tetrameric Chlorophyll a Light-Harvesting Complex from Trachydiscus minutus Soichiro Seki, Lorenzo Cupellini, David Bína, Elena Betti, Petra Urajová, Hideaki Tanaka, Tomoko Miyata, Keiichi Namba, Genji Kurisu, Tomáš Polívka, Radek Litvín, and Ritsuko Fujii Journal of the American Chemical Society Article ASAP. DOI: 10.1021/jacs.5c17299cs_CZ
dc.identifier.issn1520-5126
dc.identifier.urihttps://dspace.jcu.cz/handle/20.500.14390/47550
dc.description.abstractPhotosynthetic organisms employ light-harvesting complexes (LHCs) to optimize energy capture under variable light conditions. The freshwater eustigmatophyte Trachydiscus minutus accumulates a red-shifted violaxanthin–chlorophyll protein (rVCP) that contributes to far-red light harvesting using only chlorophyll (Chl) a molecules, without chemical modification or substitution of pigments. Based on high-resolution cryo-EM and multiscale quantum chemical calculations, we uncovered a heterodimer-based tetrameric architecture, representing a unique oligomerization mode among LHCs. Within each heterodimer, Chls a are distinctively arranged adjacent to the terminal emitter, forming an unprecedentedly extended chlorophyll cluster. Quantum chemical calculations reveal three strong exciton-coupled pigment domains, two of which reside in the large cluster and solely account for the intense far-red absorption near 700 nm without contributions from charge–transfer states. Our structural and quantum chemical characterizations of far-red light harvesting reveal a molecular mechanism of red spectral tuning that relies on protein-controlled excitonic coupling of identical Chl a pigments, as demonstrated here in this eustigmatophyte, highlighting diverse adaptations for harvesting spectrally shifted, low-energy light.cs_CZ
dc.description.sponsorshipThis work was supported by JSPS KAKENHI Grant Number 24H02091 (to R.F.); JSPS KAKENHI Grant Number 25K18413 and Grant-in-aid for JSPS Fellowships Grant Number 23KJ1834 and 25KJ0223 (to S.S.); JSPS KAKENHI Grant Number 23H04958 and JST CREST Grant Number JPMJCR20E1 (to G.K.); the Platform Project for Supporting Drug Discovery and Life Science Research (BINDS) from AMED under Grant Number JP23ama121001 (to G.K.) and JP23ama121003 (to K.N.); and JEOL YOKOGUSHI Research Alliance Laboratories of Osaka University (to K.N.). Work in the Czech Republic was supported by OP JAK project Photomachines reg. no. CZ.02.01.01/00/22_008/0004624 (to D.B., P.U., T.P., and R.L.), D.B. and R.L. also acknowledge institutional support RVO: 60077344.cs_CZ
dc.language.isoencs_CZ
dc.publisherACS Publications, Washington DC, USAcs_CZ
dc.subjectred-shifted violaxanthin–chlorophyll protein, Trachydiscus minutus, red-shifted chlorophyll, photosynthetic light-harvesting system, eustigmatophytecs_CZ
dc.titleExciton Delocalization Promotes Far-Red Absorption in a Tetrameric Chlorophyll a Light-Harvesting Complex from Trachydiscus minutuscs_CZ
dc.typeArticlecs_CZ


Soubory tohoto záznamu

Thumbnail

Tento záznam se objevuje v

Zobrazit minimální záznam