Zobrazit minimální záznam

dc.contributor.advisorHochreiter, Sepp
dc.contributor.advisorMitterecker, Andreas
dc.contributor.authorKesavan Vijayakumar, Harikrishnan
dc.date.accessioned2024-03-12T11:36:06Z
dc.date.available2024-03-12T11:36:06Z
dc.date.issued2021
dc.date.submitted2021-11-18
dc.identifier.urihttps://dspace.jcu.cz/handle/20.500.14390/44853
dc.description.abstractMedical images can have extremely high resolutions which cannot be handled properly by typical state­of­art machine learning models. In this thesis, I compared the performance of two approaches of multiple instance learning models where the high resolution images are downscaled into smaller patches and low dimensional embedding are calculated using Resnet. Then low dimensional embedding are aggregated using multiple instance learning to attain class labels. The data set for this thesis consisted of high resolution histological slides of human lung which were classified to contain cancer or not.cze
dc.format37
dc.format37
dc.language.isoeng
dc.publisherJihočeská univerzitacze
dc.rightsBez omezení
dc.subjectCLAMcze
dc.subjectMultiple instance learningcze
dc.subjectLung data analysiscze
dc.subjectCLAMeng
dc.subjectMultiple instance learningeng
dc.subjectLung data analysiseng
dc.titleLung Data Analysis With Deep Learningcze
dc.title.alternativeLung Data Analysis With Deep Learningeng
dc.typebakalářská prácecze
dc.identifier.stag66708
dc.description.abstract-translatedMedical images can have extremely high resolutions which cannot be handled properly by typical state­of­art machine learning models. In this thesis, I compared the performance of two approaches of multiple instance learning models where the high resolution images are downscaled into smaller patches and low dimensional embedding are calculated using Resnet. Then low dimensional embedding are aggregated using multiple instance learning to attain class labels. The data set for this thesis consisted of high resolution histological slides of human lung which were classified to contain cancer or not.eng
dc.date.accepted2021-11-23
dc.description.departmentPřírodovědecká fakultacze
dc.thesis.degree-disciplineBioinformaticscze
dc.thesis.degree-grantorJihočeská univerzita. Přírodovědecká fakultacze
dc.thesis.degree-nameBc.
dc.thesis.degree-programApplied Informaticscze
dc.description.gradeDokončená práce s úspěšnou obhajoboucze
dc.contributor.refereeLehner, Johannes


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v

Zobrazit minimální záznam