dc.contributor.advisor | Hochreiter, Sepp | |
dc.contributor.author | Promberger, Markus | |
dc.date.accessioned | 2025-03-06T08:05:38Z | |
dc.date.available | 2025-03-06T08:05:38Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022-03-08 | |
dc.identifier.uri | https://dspace.jcu.cz/handle/20.500.14390/46152 | |
dc.description.abstract | In this thesis a sequence to sequence autoencoder for amino acid sequences is constructed. The latent representation of the autoencoder is then used to classify the amino acid sequences according to their animal kingdom. The data consists of sequences from three different kingdoms, mammals, fish and birds. The thesis includes the preprocessing necessary for the data, the construction of the sequence to sequence autoencoder and the process of classification in the latent space. | cze |
dc.format | 57 | |
dc.format | 57 | |
dc.language.iso | eng | |
dc.publisher | Jihočeská univerzita | cze |
dc.rights | Bez omezení | |
dc.subject | machine learning | cze |
dc.subject | sequence to sequence autoencoder | cze |
dc.subject | amino acid sequence | cze |
dc.subject | bioinformatic | cze |
dc.subject | sequence alignment | cze |
dc.subject | clustering | cze |
dc.subject | machine learning | eng |
dc.subject | sequence to sequence autoencoder | eng |
dc.subject | amino acid sequence | eng |
dc.subject | bioinformatic | eng |
dc.subject | sequence alignment | eng |
dc.subject | clustering | eng |
dc.title | Auto-Encoding Amino Acid Sequences with LSTM | cze |
dc.title.alternative | Auto-Encoding Amino Acid Sequences with LSTM | eng |
dc.type | bakalářská práce | cze |
dc.identifier.stag | 61194 | |
dc.description.abstract-translated | In this thesis a sequence to sequence autoencoder for amino acid sequences is constructed. The latent representation of the autoencoder is then used to classify the amino acid sequences according to their animal kingdom. The data consists of sequences from three different kingdoms, mammals, fish and birds. The thesis includes the preprocessing necessary for the data, the construction of the sequence to sequence autoencoder and the process of classification in the latent space. | eng |
dc.date.accepted | 2022-03-24 | |
dc.description.department | Přírodovědecká fakulta | cze |
dc.thesis.degree-discipline | Bioinformatics | cze |
dc.thesis.degree-grantor | Jihočeská univerzita. Přírodovědecká fakulta | cze |
dc.thesis.degree-name | Bc. | |
dc.thesis.degree-program | Applied Informatics | cze |
dc.description.grade | Dokončená práce s úspěšnou obhajobou | cze |
dc.contributor.referee | Paischer, Fabian | |
dc.description.defence | <p>Committe : Rudolf Vohnout, Ales Horak, Alois Regl, Marta Vohnoutova</p>
<p>Student adheres time limit for the defense.</p>
<p>From the reveiws discsussion begun - mainly concerning data sets used for the thesis, their qantity and origin. Also the question if this apoproach is feasible to replace traditional phylogenetic trees arises.</p> | cze |