Zobrazit minimální záznam

dc.contributor.advisorRumetshofer, Elisabeth
dc.contributor.authorRanđelović, Teodora
dc.date.accessioned2026-01-06T11:54:52Z
dc.date.available2026-01-06T11:54:52Z
dc.date.issued2023
dc.date.submitted2023-05-13
dc.identifier.urihttps://dspace.jcu.cz/handle/20.500.14390/48607
dc.description.abstractThe study aims to develop a system for detecting diabetic retinopathy using deep learning. In this study I have explored transfer learning with four distinct models and addressed the issue of an unbalanced dataset with oversampling. The final experiment achieved a significant improvement in accuracy and quadratic kappa score. The study highlights the potential of deep learning and the importance of addressing dataset imbalances for accurate results.cze
dc.format36p.
dc.format36p.
dc.language.isoeng
dc.publisherJihočeská univerzitacze
dc.rightsBez omezení
dc.subjectDiabetic Retinopathycze
dc.subjectDeep learningcze
dc.subjectTransfer learningcze
dc.subjectConvolutional neural networkcze
dc.subjectImage classificationcze
dc.subjectmedical imagingcze
dc.subjectdiabetic macular edemacze
dc.subjectretinal fundus photographscze
dc.subjectcomparative analysiscze
dc.subjectoversamplingcze
dc.subjectaccuracycze
dc.subjectquadratic kappa scorecze
dc.subjectDiabetic Retinopathyeng
dc.subjectDeep learningeng
dc.subjectTransfer learningeng
dc.subjectConvolutional neural networkeng
dc.subjectImage classificationeng
dc.subjectmedical imagingeng
dc.subjectdiabetic macular edemaeng
dc.subjectretinal fundus photographseng
dc.subjectcomparative analysiseng
dc.subjectoversamplingeng
dc.subjectaccuracyeng
dc.subjectquadratic kappa scoreeng
dc.titleDetection of Diabetic Retinopathy using Deep Learning and Transfer Learning Techniques with Oversampling to Address Imbalanced Datasetcze
dc.title.alternativeDetection of Diabetic Retinopathy using Deep Learning and Transfer Learning Techniques with Oversampling to Address Imbalanced Dataseteng
dc.typebakalářská prácecze
dc.identifier.stag72690
dc.description.abstract-translatedThe study aims to develop a system for detecting diabetic retinopathy using deep learning. In this study I have explored transfer learning with four distinct models and addressed the issue of an unbalanced dataset with oversampling. The final experiment achieved a significant improvement in accuracy and quadratic kappa score. The study highlights the potential of deep learning and the importance of addressing dataset imbalances for accurate results.eng
dc.date.accepted2023-06-02
dc.description.departmentPřírodovědecká fakultacze
dc.thesis.degree-disciplineBioinformaticscze
dc.thesis.degree-grantorJihočeská univerzita. Přírodovědecká fakultacze
dc.thesis.degree-nameBc.
dc.thesis.degree-programApplied Informaticscze
dc.description.gradeDokončená práce s úspěšnou obhajoboucze
dc.contributor.refereeHofmarcher, Markus
dc.description.defence<p>Committee: Konvička, Regl, Vohnout, Vohnoutova</p> <p>The student has presented her thesis within the time given.&nbsp;</p> <p>Questions:</p> <p>- Why did you not communicated well the experiment designs with your supervisor?</p> <p>- What if the retina is damaged from different diseases (not only diabetes) ? Are you able to detect it?</p> <p>- Your score is about 80%. What if you compare this to the accuracy of the doctor?</p> <p>- What is balanced accuracy in your work?</p>cze


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v

Zobrazit minimální záznam